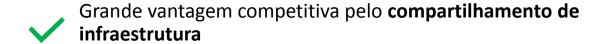


Evolução da Capacidade Instalada do SIN – Horizonte Decenal

- Cada fonte foi tratada de forma individual na projeção da expansão da oferta
- Para os próximos estudos, pode-se considerar as combinações de fontes usinas híbridas

Sinal Regulatório: a modernização da regulação destrava mercados de alto potencial

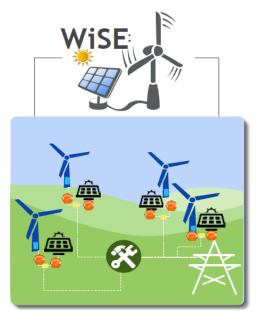

Exemplo de sinal regulatório

Fonte: PDE 2027

Com o adequado sinal regulatório, espera-se uma expansão acelerada de usinas híbridas

Tecnologia disponível

Melhor aproveitamento da transmissão (redução da ociosidade da rede) com benefícios direto ao consumidor (expansão evitada)


Complementariedade de produção de produção de energia intra diária

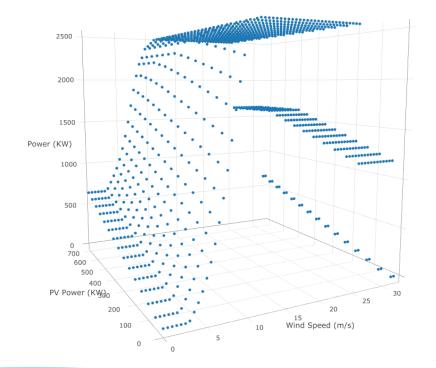
CASA DOS VENTOS

- ESTUDO DE CASO
- PIPELINE USINAS HÍBRIDAS

Primeiro Estudo de Caso

Existing Wind BOP /Infrastructure

Additional WISE& Solar BOP

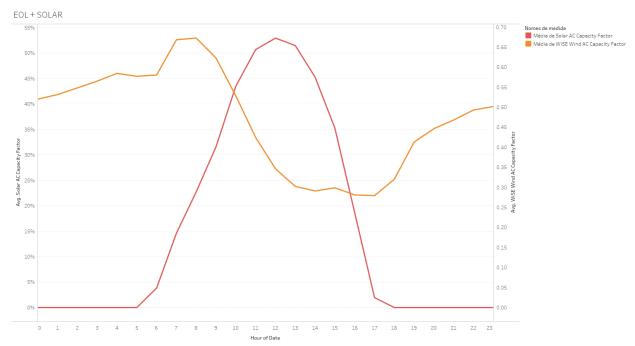

K1 Contactor

DC link
Rotor
converter

DF IG

Boost
Passives,
protection, LOTO
Combiner Box
Solar panels

- Redução de Capex (conversor EOL serve como inversor UFV) e Opex
- Benefício da complementaridade dos recursos eólico e solar para cada posição de aerogerador
- Uso mais racional do sistema de transmissão e de toda a infraestrutura elétrica do parque eólico
- Curva de potência tridimensional Pot =f(Potência DC, Vento)

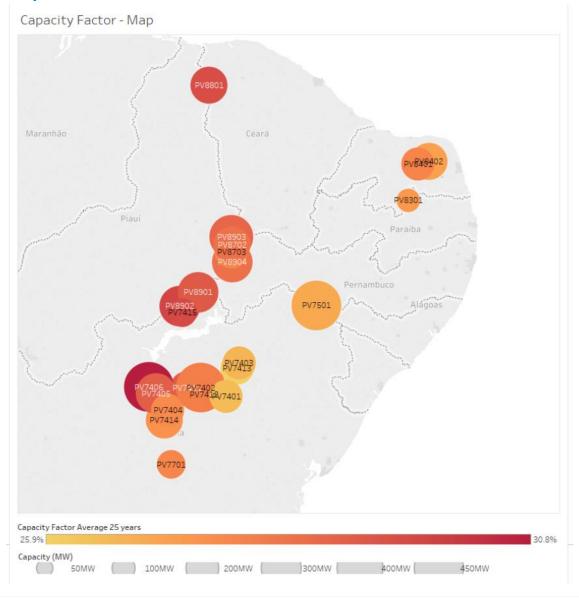

Primeiro Estudo de Caso

Protótipo - Tianguá

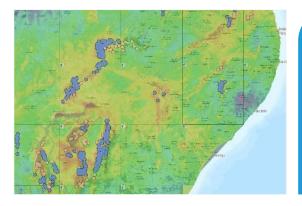
Potência Máxima: 5 MW

Aerogeradores: 2 x GE116-2.5 MW

Aplicação WiSE* (Solar): 1,3 MWp



As tendências de média de Solar AC Capacity Factor e média de WiSE Wind AC Capacity Factor para Date hora. A cor mostra detalhes sobre média de Solar AC Capacity Factor e média de WiSE Wind AC Capacity Factor.

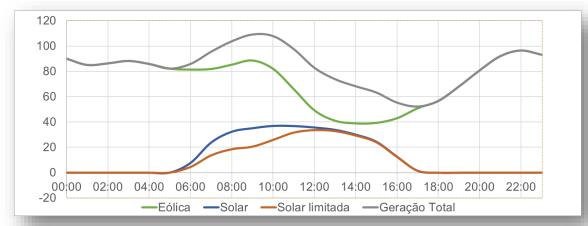


Pipeline Usinas Híbridas

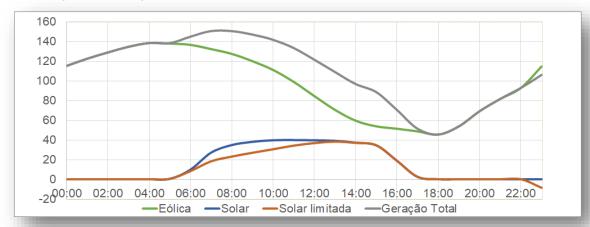
Campanhas de Medição & Instrumentos

+750 pontos de medição
312 torres anemométricas
24 torres solarimétricas
11 SODARS e LIDARS

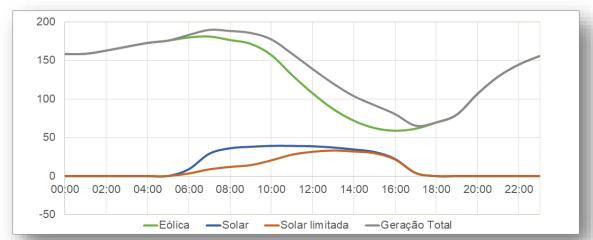
Pipeline



22.1 GW pipeline16.7 GW de Eólica5.4 GW de Solar



Pipeline Usinas Híbridas


Complexo Tianguá (CE)

Complexo Chapadinha (PE)

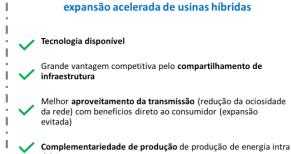
Complexo Itaguaçu Norte (BA)

Vantagens da solução

- Melhores equipamentos eólicos e solares disponíveis a preços competitivos
- Grande potencial eólico e solar a ser explorado
- Melhor aproveitamento do Sistema de Transmissão/Distribuição
- Preços competitivos e expansão evitada da Transmissão com benefício direto ao consumidor
- Redução da variabilidade instantânea da produção no mesmo ponte de conexão
- Facilidade de futuro acoplamento de baterias para atendimento de potência

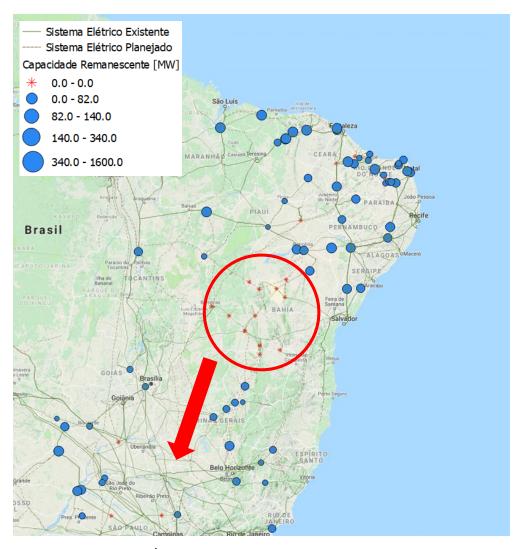
Sinal Regulatório: para qual direção a regulação deve apontar?

- Classificação das usinas: Usina Híbrida x Usinas Associadas no mesmo ponto de conexão
 - ⊕ Usina existente (A) associada com nova usina (B) outorgas separadas do mesmo grupo econômico
 - Usina nova híbrida com outorga única: mix de UGs EOL e UFV


Com o adequado sinal regulatório, espera-se uma

Definição individualizada do nível ótimo de composição de cada fonte (descentralizado)

Estimativa de Curtailment


- MUST Híbrido
 - MUST único considerando a potência injetada definido por cada agente, limitado à capacidade de escoamento suportada pela rede, seja para projeto híbrido seja para usinas associadas
 - Garantia Física
- Leilão de Energia Nova

 - Garantia Física adicional na usina principal indicada
 - Portaria usina híbrida

TRANSMISSÃO: Viabilizar a expansão da geração competitiva para o SIN

Aumento da Capacidade de Transmissão da Interligação entre as regiões NE e SE/CO para Escoamento de Excedentes de Energia do NE

Mês		Submercado			
	SE/CO	S	NE	N	
04/2019	180,41	180,41	42,35	42,35	
03/2019	234,49	234,49	154,15	42,35	
02/2019	443,66	443,67	164,24	45,28	
01/2019	192,10	192,10	84,76	74,19	
01/2019	192,10	192,10	84,76	74,19	

A geração eficiente e competitiva deve chegar no centro de gravidade da carga

Fonte: NT ONS LEN A-4/2018

