Mudanças Climáticas: Resiliência e Adaptação do Setor Elétrico Brasileiro

Superintendência de Meio Ambiente | EPE Abril/2024

Esse Caderno resume as informações contidas na Nota Técnica NT-016/2023-EPE-DEA-SMA, de dezembro de 2023.

Sobre a EPE - Empresa de Pesquisa Energética

Empresa Pública Federal vinculada ao Ministério de Minas e Energia

Desenvolvemos estudos e estatísticas energéticas para subsidiar a formulação, implementação e avaliação da política energética nacional

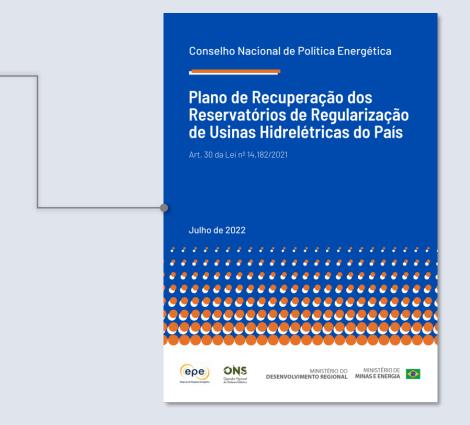
Valor Público

As questões relacionadas às mudanças climáticas vêm trazendo transformações na produção da energia, nos hábitos de consumo, na economia, na legislação e, consequentemente, na forma de planejar o sistema energético.

Nesse sentido, projeções climáticas e seus potenciais impactos estão sendo discutidos e avaliados no planejamento de longo prazo do setor, auxiliando no desenvolvimento de um sistema capaz de manter suas funções em cenários adversos.

Diante disso, a partir de uma revisão bibliográfica, esse trabalho pretende **compreender melhor as relações entre as mudanças climáticas e o setor elétrico brasileiro**. Com isso, espera-se formar uma base de conhecimento fundamental para aprofundar estudos e avaliações com foco em aumentar a resiliência do sistema.

Para além do planejamento energético, o compartilhamento de informações por si só contribui para o fortalecimento da resiliência climática, auxiliando os agentes e partes interessadas nas suas respectivas estratégias.



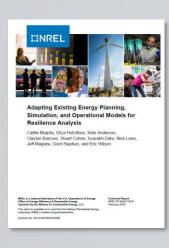
A Nota Técnica NT-016/2023-EPE-DEA-SMA

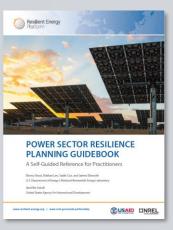
Nota Técnica elaborada no âmbito da **ação CP17 do Plano de Recuperação dos Reservatórios de Regularização de Usinas Hidrelétricas do País - PRR**, cujas diretrizes de elaboração foram estabelecidas no Art. 30 da Lei nº 14.182, de 2021.

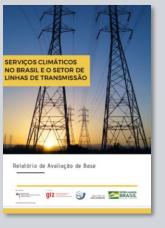
A concepção do PRR partiu das **reflexões e lições aprendidas** durante o período de **escassez hídrica vivenciado no ano de 2021,** consequência de um cenário com as menores vazões observadas desde 1930 e de baixos níveis de armazenamento de energia dos reservatórios do país.

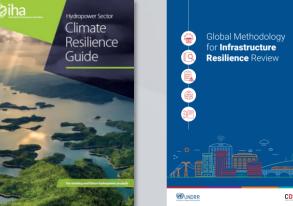
A CP17 é uma ação de curto prazo que tem por objetivo "*Elaboração de Roadmap que aborde iniciativas e estratégias que permitam o fortalecimento da resiliência do setor elétrico em resposta às mudanças climáticas.*" Sua primeira etapa foi finalizada em dez/2023 e a conclusão está prevista para jun/2025.

SISTEMATIZAÇÃO DAS REFERÊNCIAS CONSULTADAS







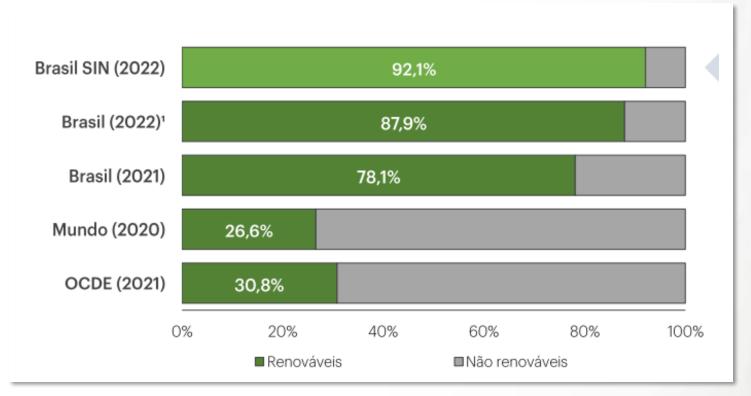


- Levantamento de instituições e estudos, nacionais e internacionais, relacionadas à temática de energia e mudanças climáticas.
- Base de dados e plataformas que disponibilizam informações climáticas e do sistema elétrico brasileiro

- Instituições (8) internacionais e (9) nacionais
- **Estudos**: Planos, Estudos e Guias sobre Resiliência e Adaptação
- Base de dados e plataformas

O QUE É RESILIÊNCIA EM SISTEMAS DE ENERGIA?

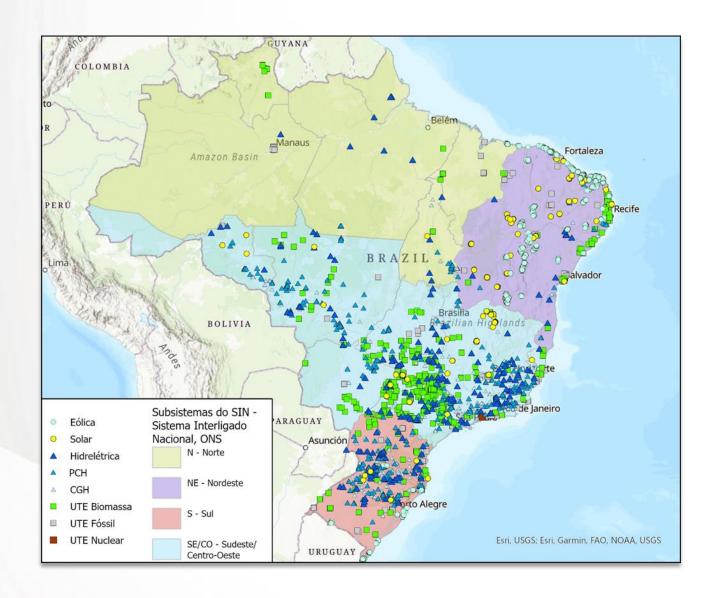
Resiliência é a capacidade dos sistemas de lidar com uma perturbação, respondendo ou reorganizando-se para manter sua funcionalidade, estrutura e identidade, mantendo sua capacidade de adaptação, aprendizagem e transformação (IPCC, 2023).


Em sistemas de energia, a IEA (2021) define Resiliência como a capacidade de antecipar, absorver, acomodar e se recuperar dos impactos climáticos adversos, associando a três dimensões principais: robustez; desenvoltura e recuperação.

O SISTEMA ELÉTRICO BRASILEIRO E AS MUDANÇAS CLIMÁTICAS

O setor elétrico brasileiro está em constante transformação alinhado com as políticas climáticas.

No contexto global, o Brasil se destaca por ter uma matriz energética com significativa participação de fontes renováveis. Em 2022, cerca de 47% da matriz energética brasileira foi de fontes renováveis; enquanto a média mundial em 2020 foi de 14%. No caso da matriz elétrica, aproximadamente **92% da oferta de energia elétrica do SIN foi de fontes renováveis em 2022**; já a média de participação de renováveis na oferta elétrica mundial foi de 27% em 2020 (EPE, 2023a).



Fonte: Balanço Energético Nacional - Relatório Síntese, 2023 (EPE, 2023)

As mudanças climáticas irão afetar sobretudo as fontes de geração renováveis, que são diretamente dependentes das condições do clima, como, hidrelétrica, eólica, solar e bioenergia.

Devido às dimensões continentais do país, os riscos associados às mudanças climáticas são distintos entre as regiões. Ao mesmo tempo, a distribuição do parque gerador também não é uniforme, tanto em termos espaciais quanto em capacidade instalada de cada uma das fontes.

O subsistema Sudeste/Centro-Oeste é responsável pela maior participação na capacidade instalada do SIN (47%). Este subsistema responde por 70% da capacidade total de armazenamento do SIN, por conta dos reservatórios hidrelétricos localizados na bacia hidrográfica do Rio Paraná.

O subsistema Nordeste é responsável por aproximadamente 26% da capacidade instalada e 18% da capacidade de armazenamento, com destaque para a grande participação de geração eólica e solar, e para os reservatórios localizados na bacia do Rio São Francisco.

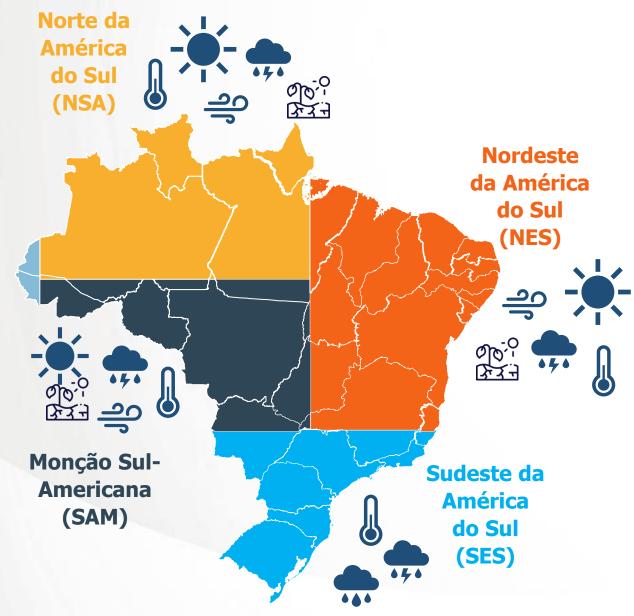
Os **subsistemas Sul e Norte** são responsáveis **por 14% e 13%** da capacidade instalada, respectivamente.

O Plano Nacional de Adaptação (MMA, 2016) aponta que **o Sistema Interligado Nacional possibilita a compensação natural dos efeitos dos impactos climáticos** devido à interconexão do sistema de geração elétrica. Essa compensação proporciona ao sistema elétrico uma capacidade intrínseca de adaptação. Alguns exemplos dessa capacidade adaptativa são:

Diversidade da matriz elétrica que implica em uma complementariedade natural da oferta de energia entre as diversas fontes. Essa complementariedade ocorre devido a uma sazonalidade que faz com que o período de geração mais intenso por eólicas ou térmicas de biomassa ocorra nos meses do ano em que as vazões são mais baixas;

Sistema de gerenciamento de despacho de energia centralizado em um órgão com abrangência nacional;

Sistema de transmissão robusto e ramificado por todas as regiões do país, interligando bacias hidrográficas e centros de cargas, transmitindo grandes blocos de energia por milhares de quilômetros com alta confiabilidade;



Reserva de geração que, no caso de eventos conjunturais extremos, é acionada para a estabilidade da oferta de energia.

Dessa forma, a resiliência do sistema elétrico brasileiro deve ser enxergada de maneira integrada, considerando suas potencialidades e suas diversas estruturas e componentes relacionados à produção, geração, transmissão e ao consumo, de modo a atender o objetivo de fornecimento de energia elétrica de maneira segura e confiável.

MUDANÇAS CLIMÁTICAS GLOBAIS E AS PERSPECTIVAS PARA O BRASIL

Fonte: Atlas do IPCC (2021)

Aumento da temperatura média do ar em todo o país

Aumento na intensidade e frequência de **extremos de temperaturas** (calor e frio) **e ondas de calor.**

Aumento na precipitação média na região SES e redução em NES e NSA

Aumento na intensidade e frequência de **chuvas fortes e alagamentos** nas 4 regiões, com destaque para SES e na Amazônia.

Tendências crescentes na frequência e duração das **secas** nas regiões SAM, NSA e NES

Aumento na velocidade média dos ventos nas regiões NSA, SAM e NES

Aumento da radiação na superfície nas regiões NSA, SAM e NES

POTENCIAIS IMPACTOS DAS MUDANÇAS CLIMÁTICAS NO SISTEMA ELÉTRICO

Disponibilidade de recursos

Variações nos padrões de precipitação e vazão, radiação solar e ventos impactam a oferta de recursos para a geração elétrica.

Eficiência de equipamentos

Mudanças climáticas implicam na redução da eficiência de equipamentos de geração e transmissão de energia elétrica.

Demanda por eletricidade

Variações na temperatura resultam em maior necessidade por conforto térmico.

Riscos às infraestruturas

Eventos climáticos extremos (tempestades, ventos fortes, enchentes, deslizamentos, secas e queimadas) afetam as infraestruturas e interferem no fornecimento de energia.

A partir da revisão bibliográfica foram compilados **os potenciais impactos das mudanças climáticas no sistema elétrico brasileiro e para o fornecimento de eletricidade.** De maneira geral, esses impactos podem ser divididos nos 4 (quatro) grupos acima.

Demanda de Energia

 O aumento na temperatura, sobretudo no verão, implica em aumento na demanda de energia elétrica para refrigeração.

- Altas temperaturas reduzem a eficiência das linhas e transformadores.
- Queimadas, descargas atmosféricas, rajadas de ventos e queda de arvores implicam em danos às estruturas do sistema de transmissão.

Solar

 Mudanças nos padrões de radiação incidente na superfície podem impactar a geração de energia solar.

- Alteração nos padrões de ventos podem impactar a geração eólica.
- Ventos extremos podem causar danos às estruturas.

Hidrelétricas

- Mudanças nos padrões de precipitação e vazões podem impactar a produção de energia hidrelétrica.
- Alagamentos aumentam os riscos às estruturas.

Termelétricas

- Altas temperaturas do ar e da água reduzem a eficiência e capacidade das plantas termelétricas.
- Alterações nos padrões de precipitação e temperatura podem impactar os recursos bioenergéticos.

Fortalecimento da Resiliência do Setor Elétrico em Resposta às **Mudanças Climáticas** Revisão Bibliográfica Dezembro de 2023 MINISTÉRIO DE

CONSIDERAÇÕES FINAIS

Este Caderno resume as informações contidas na Nota Técnica NT-016/2023-EPE-DEA-SMA, de dezembro de 2023. Nela é apresentada uma revisão do conceito de resiliência, e são listadas instituições, referências bibliográficas, plataformas e base de dados disponíveis, todos relacionados ao tema resiliência às mudanças climáticas em sistemas elétricos.

Essas informações servem de subsídio para compreender os impactos no sistema elétrico brasileiro e avaliar medidas de resiliência e adaptação às mudanças climáticas.

Pretende-se, nas próximas etapas, aprofundar sobre temas específicos e definir estratégias para fortalecer a resiliência do sistema elétrico considerando diferentes cenários climáticos, discutindo e indicando possíveis aprimoramentos em estudos, metodologias e ferramentas do planejamento energético.

Entende-se que os estudos de planejamento são fundamentais para o fortalecimento da resiliência climática do setor elétrico brasileiro, acompanhando as transformações tecnológicas, antecipando os possíveis impactos e incorporando novos conhecimentos científicos, sobretudo em relação às modelagens climáticas.

Ícones: Freepik.com

Presidente

Thiago Guilherme Ferreira Prado

Diretor

Thiago Ivanoski Teixeira

Superintendente de Meio Ambiente Elisangela Medeiros de Almeida

Coordenação Técnica

Paula Cunha Coutinho de Andrade

Equipe Técnica

Ana Dantas Mendez de Mattos Alfredo Lima Silva Gustavo Fernando Schmidt

@EPE_Brasil

EPE

EPE - Empresa de Pesquisa Energética

Praça Pio X, n. 54 20091-040 Centro - Rio de Janeiro

