

ESTUDOS PARA A LICITAÇÃO DA EXPANSÃO DA GERAÇÃO

Revisão Extraordinária do Montante de Garantia Física de Energia da UHE Salto Osório

Setembro de 2023

MINISTÉRIO DE MINAS E ENERGIA

GOVERNO FEDERAL MINISTÉRIO DE MINAS E ENERGIA MME/SNTEP

Ministério de Minas e Energia Ministro

Alexandre Silveira de Oliveira

Secretário Executiva Efrain Pereira da Cruz

Secretário Nacional de Transição Energética e Planejamento

Thiago Vasconcellos Barral Ferreira

Secretário Nacional de Energia Elétrica Gentil Nogueira de Sá Junior

Secretário Nacional de Petróleo, Gás Natural e Biocombustíveis

Pietro Adamo Sampaio Mendes

Secretário Nacional de Geologia, Mineração e Transformação Mineral

Vitor Eduardo de Almeida Saback

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei nº 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente (Interina)

Angela Regina Livino de Carvalho

Diretor de Estudos Econômico-Energéticos e Ambientais Giovani Vitória Machado

Diretor de Estudos de Energia Elétrica (Interino) Giovani Vitória Machado

Diretora de Estudos de Petróleo, Gás e Biocombustível Heloisa Borges Bastos Medeiros

Diretora de Gestão Corporativa

Angela Regina Livino de Carvalho

URL: http://www.epe.gov.br

Sede

Esplanada dos Ministérios Bloco "U" - Ministério de Minas e Energia - Sala 744 - 7° andar – 70065-900 - Brasília – DF

Escritório Central Praça Pio X, 54 – 5º Andar 20091-040 - Rio de Janeiro – RJ

ESTUDOS PARA A LICITAÇÃO DA EXPANSÃO DA GERAÇÃO

Revisão Extraordinária do Montante de Garantia Física de Energia da UHE Salto Osório

Coordenação Geral e Executiva

Angela Regina Livino de Carvalho Giovani Vitória Machado

Coordenação Executiva

Bernardo Folly de Aguiar Renato Haddad Simões Machado

Equipe Técnica

Fernanda Gabriela Batista dos Santos Luis Paulo Scolaro Cordeiro Rafaela Veiga Pillar Thais Iguchi

N° EPE-DEE-RE-049/2023

Data: 26 de setembro de 2023

Histórico de Revisões

Rev.	Data	Descrição
0	26/09/2023	Publicação Original

SUMÁRIO

AP	RES	ENTAÇÃO	<i>7</i>
1.	Me	todologia de cálculo de garantia física de Usinas Hidrelétricas	9
		itérios e Premissas para a Revisão Extraordinária de Garantia Físia a	
3.	Co	nfiguração de Referência	11
4.	Re	visão Extraordinária da Garantia Física da UHE Salto Osório	22
4	.1.	Fatos Relevantes e Características Técnicas Associadas	23
4	.2.	Parâmetros comuns às duas configurações de referência	24
<i>5.</i>	Re	sultados Obtidos	25
6.	Re	sumo dos Resultados	29
Αp	ênd	ice 1 — Resultados obtidos no cálculo dos parâmetros médios	30
I	l.1.		30
An		1 – Configuração Hidrotérmica de Referência	
		2 – Ficha de dados - UHE Salto Osório	

ÍNDICE DE TABELAS

Tabela 1 – Proporcionalidade da Carga de Energia – Ano 2028	14
Tabela 2 – Sazonalidade da Carga de Energia – Ano 2028	
Tabela 3 – Condições de desligamento da segunda casa de força de Tucuruí	
Tabela 4 – Valores de TEIF e IP estabelecidos na Portaria MME/GM nº 42/2022	19
Tabela 5 – UHE Salto Osório - Histórico de Garantia Física	
Tabela 6 — Comparação entre o projeto de modernização e os Despachos nº 2.701/2022 e nº 3.479/2023	
Tabela 7 – UHE Salto Osório - Fatos Relevantes	
Tabela 8 – UHE Salto Osório – Ponto nominal de operação da turbina das UG 5 e 6	23
Tabela 9 – UHE Salto Osório – Fatos Relevantes e Características Técnicas associadas	
Tabela 10 – Aceleração da gravidade e massa específica da água no local	
Tabela 11 — Carga crítica e blocos térmico e hidráulico	
Tabela 12 – CVaR1% ENS (% demanda anual de energia)	
Tabela 13 – CMO médio (R\$/MWh)	
Tabela 14 – CVaR _{10%} CMO da CRÁ0	
Tabela 15 – CVaR _{10%} CMO da CRA1	26
Tabela 16 — Energias Firmes e Garantias Físicas — UHE Salto Osório	26
Tabela 17 — UHE Salto Osório - Resumo dos parâmetros - Modernização	28
Tabela 18 – UHE Salto Osório - Garantias Físicas no período de Modernização	28
Tabela 19 – Resumo dos Resultados	29
Tabela 20 – UHE Salto Osório - Garantias Físicas por unidade modernizada	29
Tabela 21 — UHE Salto Osório - Coeficientes dos polinômios ajustados para as Curvas Colina das Turbinas	30
Tabela 22 – Configuração Hidrelétrica	32
Tabela 23 — Configuração Termelétrica	33

ÍNDICE DE FIGURAS

Figura 1 – Nova topologia de REE para o SIN – topologia G	14
Figura 2 – Gráfico de pontos de operação previstos para UHE Salto Osório – Unidades 1 a 4 - Vazão Unitária	
(m³/s) X Queda Líquida (m) X Rendimento da Turbina (%)	31
Figura 3 – Gráfico de pontos de operação previstos para UHE Salto Osório – Unidades 5 e 6 - Vazão Unitária	
(m³/s) X Queda Líquida (m) X Rendimento da Turbina (%)	31

APRESENTAÇÃO

A presente Nota Técnica registra os estudos efetuados pela Empresa de Pesquisa Energética - EPE, em conformidade com a regulamentação vigente, para o cálculo da revisão extraordinária do montante de garantia física de energia da usina hidrelétrica Salto Osório.

Por meio do Ofício nº 325/2022-DPE/SPE-MME, de 14 de outubro de 2022, referente ao bloco de revisão extraordinária de garantia física de usinas hidrelétricas de setembro de 2022, foi solicitado à EPE que realizasse as análises e os cálculos necessários para a revisão extraordinária de garantia física da UHE Estreito assim como a avaliação dos parâmetros homologados para a UHE Salto Osório pela Agência Nacional de Energia Elétrica — ANEEL, constantes no Despacho nº 2.701, de 22 de setembro de 2022, visando certificar se são os mesmos, ou pelo menos melhores, que aqueles empregados na Revisão Extraordinária que fundamentou a Portaria MME nº 81/2017.

Em 20 de setembro de 2022, a ANEEL publicou o Despacho nº 2.679, que homologou os parâmetros de rendimento nominal da turbina, rendimento nominal do gerador e perda de carga no circuito de adução da UHE Estreito, com base na análise consubstanciada na Nota Técnica nº 734/2022-SCG/ANEEL.

Durante reunião ocorrida entre Ministério de Minas e Energia – MME, EPE e ANEEL em 6 de dezembro de 2022, a EPE fez uma apresentação questionando os valores homologados pela ANEEL. Este questionamento foi encaminhado posteriormente por comunicação eletrônica, no dia 9 de fevereiro de 2023.

Após análise mais aprofundada por parte da ANEEL, registrada na Nota Técnica nº 127/2023-SCE/ANEEL, de 7 de junho de 2023, foi publicado o Despacho nº 1.747, de 12 de junho de 2023, revogando o Despacho nº 2.679/2022. Portanto, a UHE Estreito foi excluída deste bloco de Revisão Extraordinária, conforme registrado no Ofício nº 303/2023/DPOG/SNTEP-MME, de 18 de julho de 2023, em complementação ao Ofício nº 325/2022-DPE/SPE-MME.

Em relação à UHE Salto Osório, em 19 de setembro de 2023, a ANEEL publicou o Despacho nº 3.479, que altera no Despacho nº 2.701/2022 o valor do rendimento nominal da turbina e a nomenclatura do item "Queda líquida nominal (m)" para "Queda líquida de referência (m)". Portanto, os parâmetros homologados pela ANEEL são a potência instalada, o rendimento nominal por turbina e gerador e a queda líquida de referência das unidades geradoras nºs 5 e 6.

Considerando que a validade do acréscimo de garantia física atribuído à UHE Salto Osório a que se refere a Portaria MME nº 81, de 30 de março de 2017, está condicionada tanto à

comprovação da efetiva modernização da usina quanto à homologação pela ANEEL das características técnicas empregadas no cálculo dos montantes definidos na referida portaria, o MME solicitou à EPE, por meio do Ofício nº 325/2022-DPE/SPE-MME, a avaliação dos parâmetros homologados pela ANEEL nos Despachos nº 2.701/2022 e nº 3.479/2023, de forma a certificar de que tais parâmetros são os mesmos, ou pelo menos melhores, que aqueles empregados na Revisão Extraordinária que fundamentou a Portaria MME nº 81/2017.

Em relação ao projeto de modernização, utilizado na revisão referente à Portaria nº 81/2017, não houve atualização da potência instalada. No entanto, os rendimentos nominais por turbina e gerador homologados pelos Despachos nº 2.701/2022 e nº 3.479/2023 são diferentes e menores dos considerados na Revisão Extraordinária que resultou na Portaria nº 81/2017. Portanto, dada a alteração desses parâmetros, resultante da mudança do fabricante da turbina e, consequentemente, da curva colina da turbina que é utilizada no cálculo do rendimento médio do conjunto turbina gerador, foi necessário realizar uma nova Revisão Extraordinária, considerando os critérios, premissas e configuração de referência atualizados.

A EPE analisou a documentação fornecida, avaliando os fatos relevantes e os parâmetros energéticos associados, de forma a representar nas configurações CRA0 e CRA1 apenas o ganho de garantia física referente à alteração dos fatos relevantes, em conformidade com o artigo 4º da Portaria MME nº 406, de 16 de outubro de 2017.

Após análise e troca de informações entre ANEEL, ONS e EPE, foram realizados os cálculos das novas garantias físicas de energia de acordo com o artigo 9º da Portaria MME nº 406/2017.

No Anexo 2 é apresentada a ficha de dados da usina hidroelétrica Salto Osório, com destaque em vermelho para os parâmetros considerados de forma distinta em cada configuração de referência.

1. Metodologia de cálculo de garantia física de Usinas Hidrelétricas

A garantia física de energia do Sistema Interligado Nacional — SIN pode ser definida como aquela correspondente à máxima quantidade de energia que este sistema pode suprir a um dado critério de garantia de suprimento. Esta quantidade de energia pode, então, ser rateada entre todos os empreendimentos de geração que constituem o sistema. O valor assim atribuído pelo rateio a cada empreendimento constitui-se em sua garantia física, que é o lastro físico daqueles empreendimentos com vistas à comercialização de energia via contratos.

Consoante a Lei nº. 10.848, de 15 de março de 2004, Art. 1°, §7°, "o CNPE proporá critérios gerais de garantia de suprimento, a serem considerados no cálculo das garantias físicas e em outros respaldos físicos para a contratação de energia elétrica, incluindo importação". E, segundo o Decreto 5.163 de 30 de junho de 2004, Art. 4°, §2°, "O MME, mediante critérios de garantia de suprimento propostos pelo CNPE, disciplinará a forma de cálculo da garantia física dos empreendimentos de geração, a ser efetuado pela Empresa de Pesquisa Energética – EPE, mediante critérios gerais de garantia de suprimento".

O critério vigente de garantia de suprimento foi estabelecido na Resolução CNPE nº 29/2019, com parâmetros definidos na Portaria MME nº 59/2020.

Cabe ressaltar que, segundo previsto na Portaria MME nº 101/2016, a garantia física é determinada na barra de saída do gerador, não sendo considerados nesses montantes os consumos internos das usinas hidrelétricas despachadas centralizadamente, nem as perdas elétricas (na rede básica e até o centro de gravidade do submercado no qual a usina esteja localizada).

Os montantes de garantia física de cada empreendimento de geração, calculados pela EPE e constantes desta nota técnica, somente serão válidos após publicação de portaria do Ministério de Minas e Energia – MME, conforme competência estabelecida no art. 2°, §2° do Decreto n° 5.163, de 30 de julho de 2004.

2. Critérios e Premissas para a Revisão Extraordinária de Garantia Física de Energia

A Portaria MME nº 406, de 16 de outubro de 2017, estabelece os fatos relevantes e a metodologia para revisão extraordinária dos montantes de garantia física de energia de Usina Hidrelétrica despachada centralizadamente no Sistema Interligado Nacional - SIN. Esta portaria revogou a Portaria MME nº 861/2010.

Os benefícios indiretos poderão ser revisados, nos termos da Portaria MME nº 406/2017.

O Ministério de Minas e Energia - MME poderá determinar, para a revisão extraordinária dos montantes de garantia física de energia, novos fatos relevantes não considerados nos incisos I a VI do art. 4º da citada Portaria.

As características técnicas referidas nos art. 4º e 5º da Portaria MME nº 406/2017 deverão ser aprovadas ou homologadas por meio de atos próprios a serem publicados pela ANEEL.

Embora a perda hidráulica e os rendimentos de turbina e gerador, analisados pela ANEEL, sejam os nominais, nas simulações energéticas, os parâmetros adotados serão os médios, pois refletem de maneira mais apropriada as condições da usina ao longo de uma simulação dinâmica da sua operação, sujeita a variadas condições de queda e vazão. Os parâmetros médios serão obtidos segundo metodologia apresentada na Nota Técnica EPE-DEE-RE-037/2011-r2.

Uma vez definidas pelo MME/ANEEL as características técnicas que constituem fatos relevantes, eventualmente outros parâmetros podem ser impactados. Por exemplo, no caso de alteração de potência instalada ou número de unidades geradoras, poderão ser impactados: rendimento médio do conjunto turbina-gerador, vazão efetiva¹, perdas de carga no circuito hidráulico de geração, perdas hidráulicas médias, queda de referência ², taxas de indisponibilidades das unidades geradoras. Portanto, se faz necessária uma avaliação global do empreendimento que está pleiteando revisão de garantia física.

A partir de uma configuração de referência, a EPE estabelecerá as configurações de referência atual CRA0, CRA1 e CRA1*.

A elaboração da CRAO requer a identificação dos valores considerados no cálculo de garantia

_

¹ No modelo Newave utiliza-se um parâmetro denominado vazão efetiva, que não se confunde com a vazão nominal unitária da turbina. A vazão efetiva é definida como a razão entre a potência unitária do gerador e o produto entre o rendimento médio do conjunto turbina-gerador, a queda de referência, a massa específica da água e a aceleração da gravidade. Portanto, em cada uma das configurações de referência ela vai ser calculada a partir dos valores cadastrados.

² A queda de referência é definida como sendo aquela para a qual a turbina, com abertura total do distribuidor fornece a potência nominal do gerador, conforme Manual de Estudos de Viabilidade da Eletrobrás, edição 1997. Nas análises subsequentes esta definição será adotada onde for necessária a avaliação da queda de referência da turbina.

física vigente, seja no conjunto de arquivos dos modelos de otimização e simulação utilizados à época do cálculo, seja em correspondências trocadas entre o responsável pelo cálculo e a ANEEL, nos contratos de concessão, etc. Na ausência de informações, serão considerados os valores cadastrados no PMO.

Os dados comuns às duas configurações de referência atual, CRA0 e CRA1 ou CRA0 e CRA1*, serão os mais atualizados possíveis.

Para as usinas que terão suas garantias físicas revistas contemplando as alterações nas características técnicas listadas apenas no artigo 4º, a nova garantia física será composta pela soma da garantia física vigente mais a diferença entre as garantias físicas obtidas nas configurações de referência CRA1 e CRA0.

Para obter as garantias físicas de energia das configurações de referência CRA1*, CRA1 e CRA0 - GF1*, GF1, GF0, respectivamente - emprega-se a metodologia estabelecida na Portaria MME nº 101, de 22 de março de 2016, ou outra que venha a substituí-la. Na determinação da GF1 e da GF1* deve-se buscar igualar os Custos Marginais de Operação - CMOs obtidos no cálculo de GF0.

Para as usinas que terão suas garantias físicas revistas contemplando as alterações nas características técnicas listadas no artigo 5º ou nos artigos 4º e 5º, a nova garantia física será obtida pela soma da garantia física local vigente com duas parcelas obtidas pela aplicação da Portaria MME nº 406/2017: o benefício indireto novo e a diferença entre as garantias físicas obtidas nas configurações de referência CRA1* e CRA0.

3. Configuração de Referência

A Portaria nº 43/GM/2022 apresenta as premissas que devem ser empregadas no cálculo da garantia física de energia de UHE e UTE despachadas centralizadamente pelo ONS. Algumas informações são detalhadas a seguir.

Modelos utilizados, conforme definição do MME:

- → NEWAVE Versão 28, homologada pelo Despacho nº 503, de 17 de fevereiro de 2022;
- → SUISHI Versão 16 (Encad versão 5.6.37), aprovada em Reunião Plenária da CPAMP, em 30 de junho de 2022, conforme divulgação no endereço eletrônico do Ministério

de Minas e Energia3.

Parâmetros do modelo NEWAVE:

- → Número mínimo e máximo de 50 iterações;
- → Construção da política de operação adotando-se 200 simulações forward e 20 aberturas para simulação backward;
- → Simulação final com 2.000 séries sintéticas de vazões;
- → Configuração hidrotérmica estática com 5 anos de simulação, 10 anos de período estático inicial e 5 anos de período estático final, para o modelo NEWAVE.
- → Racionamento preventivo para otimização energética: não considerar;
- → Despacho antecipado de usinas térmicas a gás natural liquefeito (GNL): considerar;
- → Tendência hidrológica: não considerar;
- → Acoplamento hidráulico entre os Reservatórios Equivalentes de Energia (REEs): considerado entre os REEs Paraná e Paranapanema (origem) e Itaipu (destino);
- → Consumo próprio (consumo interno): não considerar.
- → Parametrização de CVaR vigente: alfa 25% e lambda 35% constantes no tempo, conforme determinação da Portaria nº 43/GM/2022.
- → Perdas nas interligações entre subsistemas: não considerar.
- → Taxa de Desconto: 8% ao ano, de forma a compatibilizar este parâmetro aos estudos dos Planos Decenais de Expansão de Energia.
- → Tolerância para Atendimento ao Critério de Igualdade entre o Custo Marginal de Operação CMO e Custo Marginal de Expansão CME: 2,00 R\$/MWh.
- → Metodologia de Seleção de Cortes:
 - Iteração para Início de Aplicação da Seleção de Cortes: 1;
 - o Tamanho da Janela de Cortes Ativos: 3;
 - Quantidade de Cortes Adicionados por Iteração: 8;
 - Considera Cortes da Própria Iteração: sim.
- → Tipo de Reamostragem: Plena
- → Frequência da Reamostragem no Momento da Forward: Passo 1

³ CPAMP aprova versão 16 do modelo SUISHI — Português (Brasil) (www.gov.br)

- → Centroide como Representante do Agrupamento da Agregação dos Ruídos: Considerar
- → Correlação Espacial Mensal: considerar.
- → Critério Estatístico no Processo de Convergência: Não considerar.
- → Tolerância para Atendimento ao Critério de Valor Esperado Condicionado a Determinado Nível de Confiança - CVar do Custo Marginal de Operação - CMO: 30 R\$/MWh
- → Volume Mínimo Operativo (VminOp/VMINP): Considerar
- → Tipo de Penalização do VminOp/VMINP: Penalização da Máxima Violação
- → Mês de Penalização do VminOp/VMINP: Novembro
- → Sazonalidade do VminOp/VMINP nos Períodos Pré e Pós Estudo: Considerar
- → Penalidade do VminOp/VMINP: [(1+taxadescontoanual)^(11/12)]xMAXCVU
 Onde MAXCVU é o maior custo variável unitário considerando todo o horizonte de planejamento do NEWAVE
- → Volumes Mínimos Operativos (VminOp) de forma constante em cada REE, em função da Energia Armazenável máxima:
 - REEs Sudeste, Paraná e Paranapanema: 20%
 - o REEs Sul e Iguaçu: 30%
 - o REE Nordeste: 23,5%
 - REE Norte: 20,8%
- → Sazonalidade de VMINT, VMAXT, CMONT e CFUGA nos Períodos Pré e Pós Estudo: Considerar
- → Metodologia para Geração de Cenários Hidrológicos do Modelo GEVAZP: PAR(p)-A

Topologia:

- → Topologia de subsistemas: 4 subsistemas interligados Sudeste SE, Sul S, Nordeste - NE, Norte – N.
- → Topologia de Reservatórios Equivalentes de Energia (REE): topologia G (12 REEs), considerada a partir do PMO de 01/2018, juntamente com a versão 24 do modelo NEWAVE, conforme Despacho nº 4.166, de 11 de dezembro de 2017, ilustrada na Figura 1.

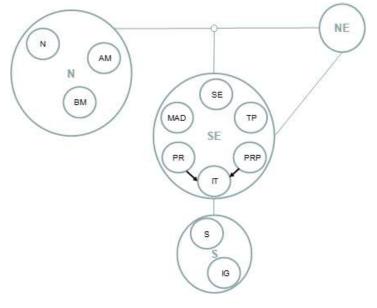


Figura 1 - Nova topologia de REE para o SIN - topologia G

- Usinas não despachadas centralizadamente não são simuladas individualmente nos modelos computacionais utilizados no cálculo de garantia física. Representa-se, apenas no modelo NEWAVE, uma expectativa de geração agregada por subsistema e por mês. Essa estimativa de geração é obtida conforme Resolução Normativa ANEEL nº 1.032, de 26 de julho de 2022. A referência para a configuração de usinas não despachadas centralizadamente será o PMO de maio de 2023. Esse montante é descontado do mercado a ser atendido.
- Proporcionalidade da carga: prevista para o ano de 2028, segundo Plano Decenal de Expansão de Energia 2031 (PDE 2031), que é o Plano Decenal de Expansão de Energia mais recente aprovado pelo Ministério de Minas e Energia, conforme tabela a seguir:

 MERCADO DE REFERÊNCIA 2028 - PDE 2031

 SE
 S
 NE
 N

 49.492
 14.701
 13.912
 8.173

 57,4%
 17,0%
 16,1%
 9,5%

BRASIL

86,278

Tabela 1 – Proporcionalidade da Carga de Energia – Ano 2028

- Limites de transmissão entre subsistemas: considerados com valores não restritivos, de forma a não limitar a capacidade de geração das usinas⁴.
- Custo de Déficit: Conforme estabelecido na Resolução Normativa nº 795, de 5 de dezembro de 2017, a Câmara de Comercialização de Energia Elétrica CCEE deverá atualizar anualmente, até o dia 20 de dezembro de cada ano, o valor do patamar da função de custo

_

⁴ O grupo de trabalho instituído pela Portaria MME nº 681, de 2014, fez avaliações que sinalizaram o elevado grau de interligação do SIN representado no presente caso de estudo. Estas avaliações subsidiaram a decisão de não se limitar a transferência de energia entre os subsistemas.

do déficit de energia elétrica pela variação do Índice Geral de Preços – Disponibilidade Interna (IGP-DI) para o período de doze (12) meses, tomando-se como base o mês de novembro de cada ano. Portanto, será utilizado o valor de 8.103,95 R\$/MWh disponível no sítio eletrônico da CCEE⁵ para o ano de 2023.

→ Penalidade por não atendimento ao desvio de água para outros usos: metodologia estabelecida na Portaria nº 43/GM/2022.

Penalidade_{DA} = Custo Déficit + 0,1% Custo Déficit + 0,10 R\$/MWh =
$$8.103,95 + 8,10 + 0,10 = 8.112,15$$
 R\$/MWh

→ Penalidade por não atendimento à restrição de vazão mínima: metodologia estabelecida na Portaria nº 43/GM/2022.

→ Penalidade por não atendimento à restrição de volume mínimo: metodologia estabelecida na Portaria nº 43/GM/2022.

PenalidadeVolMin =
$$[(1 + \text{taxadescontoanual})^{(11/12)}] \times \text{MAXCVU}$$

= $[(1 + 8\%)(11/12)] \times 3.379,07 = 3.947,99 \text{ R$/MWh}$

Onde MAXCVU é o maior custo variável unitário considerando todo o horizonte de planejamento do NEWAVE e a configuração de usinas térmicas do PMO de maio de 2023.

• Custo Marginal da Expansão – CME: foi utilizado o Custo Marginal de Expansão definido em **90,38 R\$/MWh** no relatório do Plano Decenal de Expansão de Energia – PDE 2031, aprovado pela Portaria MME/GM nº 40, de 06 de abril de 2022.

Parâmetros do modelo SUISHI:

- → Cálculo de energia firme com período crítico definido de junho de 1949 a novembro de 1956, conforme determinação da Portaria nº 43/GM/2022 (tabela 2 - Parâmetros de simulação do SUISHI);
- → Número de Faixas de Operação: 20;
- → Liberação de vertimento quando na iminência de déficit: Permitido;
- → Tipo de operação dos reservatórios: por faixas dinâmicas (opção empregada pelo

⁵ CO – <u>Divulgação do Custo de Déficit e memória de cálculo referente ao ano 2023 - CCEE</u>

MSUI);

- → Tipo de prioridades de operação das usinas hidrelétricas: adaptativa, isto é, com base em uma função prioridades (opção empregada pelo MSUI);
- → Distribuição da vazão defluente entre os patamares de carga. A duração adotada para o patamar de ponta será de 0,125 pu, ou seja, de 3 horas por dia;
- → Tolerância máxima de variação do mercado, entre a penúltima e a última iteração, no cálculo da energia firme do sistema: 1 MW médio;
- → Priorizar volume mínimo operativo em detrimento de outras restrições (por exemplo, vazão mínima): considerar;
- → Sazonalidade do mercado de energia do SIN referente ao ano de 2028 do caso de referência do PDE 2031, conforme apresentado na tabela a seguir:

Região jan fev mai jun jul ago out nov dez Sudeste 1,067456 1,073962 1,056303 1,013184 0,960630 0,943516 0,932908 0,948264 0,987705 1,015548 1,002435 0,998091 1,086123 1,106666 1,055240 1,008509 0,952186 0,963205 0,958512 0,951029 0,946608 0,969123 0,992387 1,010413 Sul Nordeste 1,036300 1,023936 1,020917 1,006254 0,996262 0,952559 0,927832 0,949612 0,971607 1,026955 1,047944 1,039822 0,967170 0,986134 1,003018 0,996166 1,003385 0,984910 0,967659 1,008768 1,028589 1,028711 1,030057 0,995432 Norte SIN 1,056112 1,063148 1,045368 1,009658 0,968987 0,952250 0,939744 0,954684 0,981980 1,010724 1,010678 1,006667

Tabela 2 – Sazonalidade da Carga de Energia – Ano 2028

- → Funcionalidades específicas ativas em usinas hidrelétricas:
 - Simulação da bacia do rio Paraíba do Sul com regras especiais⁶, considerando a UHE Simplício como usina de acoplamento hidráulico. Será considerado o arquivo default com os dados da bacia do rio Paraíba do Sul;
 - Em virtude de a simulação do modelo SUISHI empregar série de vazões naturais para a UHE Simplício, é necessário incluir a vazão remanescente (igual a 90 m³/s) como desvio d'água dessa usina e retorno na UHE Ilha dos Pombos. Na simulação com o modelo NEWAVE essa vazão remanescente já está descontada na série artificial utilizada na UHE Simplício;
 - Adicionalmente, é necessário alterar os usos consuntivos da UHE Simplício no modelo SUISHI devido ao acoplamento hidráulico com a bacia do Alto Paraíba do Sul. Do valor cadastrado no NEWAVE para os usos consuntivos da UHE Simplício, deve-se abater o uso consuntivo acumulado da UHE Funil.

No modelo NEWAVE, como não há acoplamento hidráulico entre as bacias do

⁶ Estabelecidas na Resolução Conjunta ANA/DAEE/IGAM/INEA nº 1.382, de 7 de dezembro de 2015.

Alto e do Baixo Paraíba do Sul, considera-se: (i) a UHE Funil apontando para a UHE Nilo Peçanha, e (ii) na UHE Simplício, a soma do uso consuntivo acumulado da UHE Funil com o uso consuntivo incremental em Simplício, considerando as UHEs Funil e Sobragi à montante.

- Operação do reservatório de Lajes em paralelo com a bacia do rio Paraíba do Sul (não foi considerada curva de controle de cheias);
- Curva guia de operação de reservatório para a UHE Jirau;
- Restrição de volume máximo operativo sazonal para a UHE Sinop, devido à preservação de lagoas;
- Uso do reservatório a fio d'água da UHE Belo Monte para atendimento à vazão mínima. Será considerado o compartilhamento do reservatório com a UHE Belo Monte Complementar;
- Consideração de posto intermediário de vazões influenciando o nível do canal de fuga da UHE Belo Monte (posto 293);
- Consideração do hidrograma ecológico bianual no modelo SUISHI, com as seguintes alterações:
 - Série de vazões: série de vazões artificiais (posto 292), em vez da série natural (posto 288);
 - Desvios d'água: apenas os usos consuntivos, pois o hidrograma ecológico bianual já foi descontado da série de vazões artificiais.
- Consideração do mesmo nível de montante para as UHEs Ilha Solteira e Três Irmãos;
- Consideração das Regras de Operação do Rio São Francisco⁷, aplicadas em todo o histórico de simulação;
 - As curvas de operação das usinas do São Francisco estarão em conformidade com a Nota Técnica ONS 0118/2022 "Curvas de Segurança para os Reservatórios das UHE Três Marias e UHE Sobradinho para o Período Hidrológico 2022-2023".
- Representação das condições de desligamento da segunda casa de força de Tucuruí no modelo SUISHI, através da funcionalidade potência máxima x cota;
 - As condições de desligamento da segunda casa de força de Tucuruí podem ser encontradas na Nota Técnica ONS 0069/2021 "Curva

_

⁷ Estabelecidas na Resolução ANA nº 2021, de 04 de dezembro de 2017.

Referencial de Deplecionamento da UHE Tucuruí para o Período de Julho a Dezembro de 2022". A restrição é inserida no SUISHI conforme tabela a seguir:

Tabela 3 – Condições de desligamento da segunda casa de força de Tucuruí

Cota de Operação (m)	Unidades em funcionamento na Casa de Força 2	Potência Máxima Operativa (MW)
51,6 ≤ cota < 60,5	0	4245,0
60,5 ≤ Cota < 62,0	4	5805,0
62,0 ≤ Cota ≤ 74,0	11	8535,0

- Consideração das regras operativas do rio Tocantins⁸, com a representação da restrição de vazão máxima da usina Serra da Mesa pela funcionalidade defluência x cota.
- Consideração das Regras de Operação do Rio Paranapanema para os aproveitamentos Hidrelétricos de Jurumirim ⁹, Chavantes e Capivara, estabelecidas na Resolução ANA nº 132, de 10 de outubro de 2022, com entrada em vigor a partir de 1 de janeiro de 2023, com a representação da restrição de vazão máxima pela funcionalidade defluência x cota.

Dados da configuração hidrelétrica:

 Manutenção: Para as usinas hidrelétricas e termelétricas, não foi considerada manutenção explícita, e, sim, índices de indisponibilidade forçada - TEIF e indisponibilidade programada - IP.

Para as usinas hidrelétricas com mais de sessenta meses de operação comercial, após completa motorização¹⁰, foram considerados os valores de TEIF e IP apurados pelo ONS (referência: PMO maio/2023). Para as demais usinas hidrelétricas, foram considerados os seguintes índices, estabelecidos na Portaria MME/GM nº 42, de 26 de abril de 2022:

-

⁸ Estabelecidas na Resolução ANA nº 70, de 19 de abril de 2021, para entrada em vigor a partir de 1 de dezembro de 2021.

⁹ Observação: A vazão defluente máxima de 90 m³/s definida para a faixa de restrição da UHE A. A. Laydner (Jurumirim) é menor que a vazão defluente mínima de 147 m³/s, definida no Contrato de Concessão nº 76/1999 e atualmente registrada no FSAR-H 405-2018. Observado o Artigo 13 da Resolução ANA nº 132/2022, que indica que deve ser atendida a vazão mínima mais restritiva, a vazão máxima da faixa de restrição foi majorada para 147 m³/s, menor valor compatível com a vazão mínima vigente e igual ao valor da faixa de alerta. Dessa forma, as faixas de alerta e restrição foram representadas juntas no SUISHI.

¹⁰ Data de referência: completa motorização em 31/12/2017.

Tabela 4 - Valores de TEIF e IP estabelecidos na Portaria MME/GM nº 42/2022

Limites (MW)	TEIF (%)	IP (%)
Potência Unitária <= 29 MW	1,684	3,796
29 < Potência Unitária <= 59 MW	1,844	3,641
59 < Potência Unitária <= 199 MW	1,591	3,707
199 < Potência Unitária <= 499 MW	2,681	3,478
499 < Potência Unitária <= 1300 MW	2,107	2,399

Para as usinas que apresentam mais de um conjunto de máquinas com potências unitárias em diferentes faixas da tabela acima, utilizou-se a média dos índices ponderada pela potência total de cada conjunto.

Para as usinas termelétricas em operação comercial, foram consideradas as indisponibilidades apuradas pelo ONS ¹¹, considerando os valores de TEIF e IP constantes do PMO de referência. Para as demais usinas termelétricas, foram considerados os valores constantes nos respectivos cálculos de garantia física.

 Polinômios vazão nível de jusante (PVNJ), ou curvas-chave de jusante, fornecidos pelo Grupo de Trabalho de Avaliação dos Dados Cadastrais Utilizados para o Cálculo da Produtibilidade – GTDP e homologados pelo Despacho ANEEL nº 3.611, de 11 de novembro de 2021, e flag de influência do vertimento no canal de fuga¹².

Em relação à versão homologada pela ANEEL, o ONS verificou a necessidade de ajuste nas seguintes usinas: (i) Belo Monte e Belo Monte Complementar (Pimental) voltaram a utilizar os polinômios de cadastro, conforme deck do DECOMP do PMO de 06/2022; e (ii) Igarapava teve um ajuste nos parâmetros das curvas de jusante no arquivo polinjus.dat, conforme deck do DECOMP do PMO de 09/2022.

Os polinômios vazão nível de jusante são usados exclusivamente pelo modelo SUISHI e são cadastrados no arquivo polinjus.dat, desta forma, os polinômios constantes do arquivo hidr.dat são desprezados tanto pelo modelo SUISHI quanto pelo Newave.

- Restrições Operativas Hidráulicas: para as usinas em operação, foram consideradas as restrições operativas recomendadas pelo ONS como sendo de caráter estrutural, constantes no PMO de maio de 2023 e Formulários de Solicitação de Atualização de Restrição Hidráulica – FSARH.
- Usos consuntivos e vazões remanescentes: o uso consuntivo é modelado como retirada

¹¹ De acordo com a Resolução ANEEL nº 1.033, de 26 de julho de 2022.

¹² Nas usinas cujo polinômio vazão nível de jusante ajustado pelo GTDP foi incorporado neste cálculo de garantia física, o *flag* de influência do vertimento no canal de fuga foi alterado no arquivo HIDR.DAT para 1, visto que os polinômios ajustados no âmbito do GTDP foram calculados levando-se em consideração a influência do vertimento no canal de fuga. O referido *flag* é lido pelo modelo SUISHI para cálculo do canal de fuga.

de água sem devolução, enquanto a vazão remanescente retorna a água desviada para a usina de jusante. Ambas estão sujeitas à penalização por não atendimento. Para os usos consuntivos foram consideradas as projeções de usos consuntivos para 2028 definidos pela ANA na Resolução nº 93/2021, conforme Base Nacional de Usos Consuntivos de **maio de 2022**, disponibilizada no site da ANA no link: <u>Catálogo de Metadados da ANA (snirh.gov.br)</u>. Ao avaliar a aplicação da referida base nos modelos computacionais atualmente utilizados pela EPE, foi verificada a necessidade de algumas complementações e ajustes, definidos com orientação da ANA.

Histórico de vazões: compatibilização das séries de vazões naturais com a Base Nacional de Usos Consuntivos de maio de 2022¹³, de acordo com a metodologia estabelecida, em conjunto com o ONS, para a Revisão Ordinária de Garantia Física de Energia das Usinas Hidrelétricas realizada em 2017/2018. Utilizou-se como base o Relatório ONS DOP-REL-0618/2022 – Novembro/2022 - "Atualização de séries históricas de vazões - Período 1931 a 2021". Adicionalmente, foram consideradas as séries de vazões das usinas da bacia do rio Uruguai atualizadas conforme Nota Técnica nº 8/2018/SPR-ANA.

A configuração de referência foi baseada na configuração adotada no Caso Base para o cálculo de Garantia Física para o Leilão de Reserva de Capacidade na forma de Energia de 2022, incorporando as atualizações listadas a seguir.

- Configuração de Referência Hidrelétrica:
 - → Inclusão da UHE Estrela, vencedora do Leilão A-5 de 2022, e da UHE Barra do Braúna, conforme PMO de fevereiro/2023;
 - → Alteração do TEIF e IP das usinas estruturantes Belo Monte e Santo Antônio, para os valores de referência do Anexo da Portaria GM/MME nº 42/2022, em conformidade com o inciso II do artigo 5º da referida portaria, conforme registrado no Relatório da ROGF¹⁴, de 22/11/2022 e atualização do TEIF-IP das usinas com mais de 60 meses em operação comercial conforme o PMO de maio/2023;
 - → Atualização da produtibilidade específica e da queda efetiva da UHE Governador Bento Munhoz, conforme Revisão Extraordinária publicada na Portaria SPE/MME nº 1.549/2022;
 - → Atualização dos Polinômios Cota-Área e Cota-Volume da UHE Candonga

¹³ Ao avaliar a aplicação da referida base nos modelos computacionais atualmente utilizados pela EPE, foi verificada a necessidade de algumas complementações e ajustes, definidos com orientação da ANA.

¹⁴ Relatório "Revisão Ordinária de Garantia Física de Energia das Usinas Hidrelétricas — UHEs Despachadas Centralizadamente no Sistema Interligado Nacional — SIN", de 22 de novembro de 2022, disponível em https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-352/topico-652/Relat%C3%B3rio_2022_22112022.pdf.

- Configuração de Referência Termelétrica:
 - → Inclusão dos vencedores do Leilão de Reserva de Capacidade na forma de Energia de 2022;
 - → Alteração de nome da UTE Arembepe para Guarani, de Bahia I para Curumim, e de Muricy para Apoena, conforme Despacho ANEEL nº 2.118/2022;
 - → Retirada das usinas Altos, Aracati, Baturité, Campo Maior, Caucaia, Crato, Enguia Pecém, Iguatu, Juazeiro do Norte, Marambaia e Nazária, conforme Resoluções Autorizativas ANEEL nº 12.361 a 12.371/2022;
 - → Retirada das usinas Pecém II, Camaçari Muricy II e Cambará, conforme PMO de maio/2023;
 - → Retirada das usinas das usinas do PCS21, conforme PMO de maio/2023;
 - → Alteração de modelagem da UTE Linhares para Linhares LRC;
 - → Inclusão das usinas BBF BALIZA, BONFIM, CANTA, HF S JOAQUIM, JAGUATIRI II, M.CRISTO SUC, PALMAPLAN 2, PAU RAINHA, SANTA LUZ, conforme PMO de maio/2023;
 - → Suspensão da Operação comercial da UTE Predilecta, conforme Despacho ANEEL nº 1.940/2022;
 - → Alteração da potência da UTE Nova Piratininga, em decorrência de suspensão de operação comercial parcial, conforme Despacho ANEEL nº 3.036/2022;
 - → Recomposição de disponibilidade da UTE Figueira, conforme PMO de janeiro/2023;
 - → Alteração na potência instalada da UTE Ibirité, conforme Despacho SCG ANEEL nº 1.755/2022;
 - → Retirada da UTE Campos (Antiga R. Silveira), conforme Despacho ANEEL nº260, de 31 de janeiro de 2023;
 - → Retirada da UTE Termo Norte I, conforme Resolução Autorizativa ANEEL nº 13.752, de 28 de fevereiro de 2023;
 - → Atualização de disponibilidade da UTE Cubatão, Maracanaú I, Termopernambuco, Nova Piratininga e Parnaíba V, conforme PMO de maio/2023; e
 - → Atualização de TEIF, IP e CVU conforme PMO de maio/2023.

A Configuração Hidrotérmica de referência é apresentada, de maneira resumida, no Anexo 1.

4. Revisão Extraordinária da Garantia Física da UHE Salto Osório

A garantia física vigente da UHE Salto Osório foi publicada na Portaria nº 709/GM/MME, de 30 de novembro de 2022, e consta na Nota Técnica EPE-DEE-RE-059-2022_r2. O histórico de garantia física desta usina é apresentado na tabela abaixo:

Tabela 5 – UHE Salto Osório - Histórico de Garantia Física

Portaria Nota Técnica	Potência Total (MW)	Nº de Unidades	Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Local Total (MWmed)
Contrato de concessão Resolução ANEEL nº 268/1998 Contrato de Concessão nº 192/1998	1.078,0	6	522,0	-	522,0
Revisão Ordinária 2017 Portaria GM/MME 178/2017 EPE-DEE-RE-016-2017_r2	1.078,0	6	502,6	-	502,6
Revisão Ordinária 2022 Portaria GM/MME 709/2022 EPE-DEE-RE-059-2022_r2	1.078,0	6	477,5	-	477,5

As alterações em características técnicas motivadoras desta revisão extraordinária de garantia física são decorrentes da homologação pela ANEEL por meio dos Despachos nº 2.701/2022 e nº 3.479/2023, dos parâmetros de potência instalada e rendimento nominal por turbina e gerador das unidades geradoras nºs 5 e 6.

Em relação ao projeto de modernização, utilizado na revisão extraordinária referente à Portaria MME nº 81/2017, não houve atualização da potência instalada. No entanto, os rendimentos nominais por turbina e gerador homologados pelos Despachos nº 2.701/2022 e nº 3.479/2023 são diferentes e menores do que os considerados na revisão supracitada, conforme pode-se observar na tabela a sequir:

Tabela 6 – Comparação entre o projeto de modernização e os Despachos nº 2.701/2022 e nº 3.479/2023

Parâmetros	Projeto de modernização	Despachos ANEEL nº 2.701/2022 e nº 3.479/2023	
Potência instalada	1.103,67	1.103,67	
Rendimento nominal da turbina (UG5 e UG6)	94,62% (Andritz)	93,71% (Alstom) 15	
Rendimento nominal do gerador (UG5 e UG6)	98,85% (Alstom)	98,80% (Alstom)	

1

¹⁵ O rendimento nominal da turbina do Despacho nº 2.701, de 22 de setembro de 2022 foi alterado pelo Despacho nº 3.479, de 19 de setembro de 2023.

4.1. Fatos Relevantes e Características Técnicas Associadas

Os fatos relevantes estabelecidos no Ofício nº 325/2022-DPE/SPE-MME foram: potência instalada e rendimento nominal da turbina e do gerador referentes às unidades 5 e 6.

Portanto, os fatos relevantes considerados nesta revisão são apresentados na tabela a seguir:

Tabela 7 – UHE Salto Osório - Fatos Relevantes

Fatos Relevantes			Fonte dos valores
Potência instalada	De	175,00 MW	NT nº 743/2022-SCG/ANEEL
(UG5 e UG6)	Para	187,835 MW	Despacho ANEEL nº 2.701/2022
Rendimento nominal da turbina	De	93,40%	NT nº 743/2022-SCG/ANEEL
(UG5 e UG6)	Para	93,71%	Despacho ANEEL nº 3.479/2023
Rendimento nominal do gerador	De	-	NT nº 743/2022-SCG/ANEEL
(UG5 e UG6)	Para	98,80%	Despacho ANEEL nº 2.701/2022

O ponto nominal de operação da nova turbina das unidades geradoras 5 e 6 da UHE Salto Osório é apresentado na tabela abaixo.

Tabela 8 – UHE Salto Osório – Ponto nominal de operação da turbina das UG 5 e 6

Parâmetros	Projeto Básico	Fonte dos valores	
Potência unitária nominal16	190,5 MW		
Vazão nominal	310,36 m ³ /s	Limites de operação da curva colina da turbina ¹⁷	
Queda líquida de referência	67,2 m		
Rendimento nominal	93,71%		

As características técnicas associadas aos fatos relevantes que serão consideradas de forma distinta nas duas configurações de referência (CRA0 e CRA1) são: potência unitária, queda líquida de referência, rendimento médio do conjunto turbina-gerador, vazão efetiva, canal de fuga médio¹⁸.

A CRAO procura refletir as condições do cálculo da garantia física vigente, desse modo, os valores considerados para os fatos relevantes e para as características técnicas associadas serão os constantes no conjunto de arquivos NEWAVE utilizados na Revisão Ordinária de Garantias Físicas de Energia realizada em 2022.

-

¹⁶ Potência no eixo da turbina incluídas as perdas nos mancais (236,29 kW).

¹⁷ Obtido do Relatório de Ensaio de Modelo Reduzido Final - Usina hidrelétrica Salto Osório - UG 5 e 6 (Tabela 3.8) e verificação na curva colina.

¹⁸ O canal de fuga médio a ser considerado em cada uma das configurações é a média de todo o histórico de vazões, obtido na simulação com o modelo SUISHI.

Tabela 9 – UHE Salto Osório – Fatos Relevantes e Características Técnicas associadas

Fatos Relevantes e Características Técnicas associadas	CRA0	CRA1	Fonte dos valores
Rendimento médio do conjunto turbina-gerador	90,0%	92,0%	CRA0: ROGF 2022 CRA1: Apêndice 1
Potência unitária (UG5 e UG6)	175,0 MW	187,835 MW	CRA0: ROGF 2022 CRA1: Despacho nº 2.701/2022
Queda líquida de referência (UG5 e UG6)	68,4 m	67,2 m	CRA0: ROGF 2022 CRA1: Despachos nº 2.701/2022 e nº 3.479/2023
Vazão efetiva (UG5 e UG6)	290	311	Compatível com os demais dados
Vazão efetiva (UG1 a UG4)	301	296	Compatível com os demais dados
Canal de fuga médio	326,91	326,92	Simulação do modelo SUISHI

O valor médio de rendimento do conjunto turbina-gerador é obtido a partir da aplicação da metodologia da Nota Técnica EPE-DEE-REE-037-r2, conforme detalhado no Apêndice. Neste cálculo foram considerados os valores de aceleração da gravidade e a massa específica da água no local adotados pelo GTDP no "Ciclo 1¹⁹", conforme tabelas a seguir.

Tabela 10 – Aceleração da gravidade e massa específica da água no local

Usina	Aceleração da gravidade (m/s²)	Massa específica da água (kg/m³)
Salto Osório	9,789	998,4

O canal de fuga médio foi atualizado a partir da simulação SUISHI, sendo a média dos níveis do canal de fuga ponderada pela energia gerada ao longo de todo o histórico de vazões. A vazão efetiva unitária foi atualizada de acordo com a alteração da produtibilidade específica e em concordância com a potência unitária e a queda de referência.

Os dados utilizados nas simulações energéticas são apresentados no Anexo 2.

4.2. Parâmetros comuns às duas configurações de referência

Os parâmetros comuns às duas configurações de referência são os mais atualizados possíveis e, nesse caso, são os utilizados na Configuração de Referência.

¹⁹ A atualização dos dados cadastrais para o cálculo da produtibilidade de usinas hidrelétricas proposta no "Ciclo 1" do GTDP foi autorizada no âmbito do planejamento e da programação da operação eletroenergética e formação do preço de curto prazo pelo Despacho ANEEL nº 3.328, de 28 de novembro de 2019.

5. Resultados Obtidos

CARGA CRÍTICA E BLOCO HIDRÁULICO

A partir de simulações com o modelo NEWAVE e a aplicação da metodologia constante na Portaria MME nº 101/2016, foi realizado o processo de convergência para obtenção da carga crítica, conforme critério de suprimento estabelecido na Resolução CNPE nº 29, de 12 de dezembro de 2019, com parâmetros definidos na Portaria nº 59, de 11 de fevereiro de 2020.

A partir dos dados e das premissas apresentados para as duas configurações de referência, foram feitas simulações com o modelo NEWAVE em sua versão 28, de modo a obter a carga crítica que é atendida por cada uma das configurações hidrotérmicas.

Como resultado, foi obtido o valor de 89.485 MWmed para a carga crítica do SIN para a CRA0 e 89.505 MWmed para a CRA1. Com relação ao bloco térmico e ao bloco hidráulico, os valores resultantes podem ser observados na tabela a seguir.

Tabela 11 – Carga crítica e blocos térmico e hidráulico

	CRA0	CRA1
Carga crítica	89.485	89.505
Bloco Térmico	13. 4 06	13.374
Bloco Hidráulico	50.5 4 0	50.593
Usinas não despachadas centralizadamente	25.539	25.539

Os resultados do CVaR_{1%} da energia não suprida, do CMO médio e do CVaR_{10%} do CMO podem ser encontrados nas tabelas abaixo.

Tabela 12 – CVaR1% ENS (% demanda anual de energia)

CVaR1%	CVaR1% ENS (% demanda anual de energia)							
	CRA0 CRA1							
SIN	0,000%	0,000%						
SE/CO	0,000%	0,000%						
S	0,000%	0,000%						
NE	0,000%	0,000%						
N	0,000%	0,000%						

Tabela 13 – CMO médio (R\$/MWh)

	CMO médio (R\$/I	MWh)
	CRA0	CRA1
SE/CO	90,57	90,34
S	90,57	90,34
NE	90,56	90,33
N	90,56	90,34

Tabela 14 - CVaR_{10%}CMO da CRA0

	CVaR _{10%} CMO (R\$/MWh)											
	Jan	Fev	Marc	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
SE/CO	377,93	399,04	407,32	376,69	377,29	393,33	397,35	402,62	407,10	416,82	439,89	387,14
S	377,94	399,04	407,33	376,70	377,29	393,34	397,35	402,63	407,10	416,82	439,89	387,14
NE	377,93	399,04	407,32	376,69	377,28	393,33	397,34	402,62	407,09	416,81	439,89	387,13
N	377,93	399,04	407,32	376,69	377,28	393,33	397,35	402,62	407,10	416,81	439,89	387,13

Tabela 15 - CVaR_{10%}CMO da CRA1

	CVaR _{10%} CMO (R\$/MWh)											
	Jan	Fev	Marc	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
SE/CO	384,99	400,89	405,00	377,24	368,94	389,40	393,73	394,43	398,60	403,85	424,27	390,07
S	384,99	400,89	405,01	377,24	368,94	389,40	393,73	394,43	398,61	403,86	424,27	390,07
NE	384,98	400,88	405,00	377,23	368,93	389,39	393,72	394,42	398,60	403,85	424,26	390,07
N	384,98	400,88	405,00	377,23	368,93	389,39	393,72	394,43	398,60	403,85	424,26	390,07

ENERGIAS FIRMES E GARANTIAS FÍSICAS EM CADA CONFIGURAÇÃO

As energias firmes da UHE Salto Osório foram obtidas em cada uma das configurações através de simulação com o modelo SUISHI em sua versão 16. A energia firme total do sistema hidráulico na CRAO resultou em 53.956,432 MWmed e na CRAO, 53.967,842 MWmed.

As garantias físicas foram obtidas em cada uma das configurações pela repartição do bloco hidráulico proporcionalmente às energias firmes obtidas em cada configuração. A garantia física nova é, então, obtida como a soma da garantia física vigente mais a diferença entre as garantias físicas obtidas nas duas configurações de referência.

Os valores de garantia física definidos nesta revisão extraordinária para a UHE Salto Osório são discriminados a seguir:

Tabela 16 – Energias Firmes e Garantias Físicas – UHE Salto Osório

Usina	Energia (MWı		Garantia Física (MWmed)		Δ Garantia	Garantia Física Vigente	Garantia Física
	CRA0	CRA1	CRA0	CRA1	Física	(MWmed)	Nova (MWmed)
Salto Osório	495,457	505,474	464,1	473,9	9,8	477,5	487,3

GARANTIAS FÍSICAS NO PERÍODO DE MODERNIZAÇÃO

Para a discretização da garantia física ao longo do processo de modernização de uma usina hidrelétrica será adotada a seguinte metodologia²⁰: a garantia física em cada etapa de modernização é a soma da garantia física vigente da UHE com o delta de garantia física da respectiva etapa de modernização.

Equação 1 - Garantia Física em cada etapa de modernização

$$GF_i = GF_{vigente} + \Delta GF_i$$

Onde

 GF_i é a garantia física na etapa de modernização i; $GF_{vigente}$ é a garantia física vigente da usina hidrelétrica; ΔGF_i é o delta de garantia física vigente na etapa de modernização i,

Para se obter o delta de garantia física em cada etapa de modernização, calcula-se o produto da garantia física da etapa final (CRA1) pela razão entre a energia firme da respectiva etapa de modernização e a energia firme da etapa final, limitado pela potência disponível correspondente, e subtrai-se a garantia física obtida na CRA0.

Equação 2 — Delta de Garantia Física em cada etapa de modernização

$$\Delta GF_{i} = min\left\{\frac{EF_{i}}{EF_{CRA1}}GF_{CRA1}, P_{disp}\right\} - GF_{CRA0}$$

Onde

 ΔGF_i é o delta de garantia física vigente na etapa de modernização i;

 EF_i é a energia firme na etapa de modernização i;

 EF_{CRA1} é a energia firme obtida na CRA1;

 GF_{CRA1} é a garantia física obtida na CRA1;

 P_{disp} é a potência disponível da usina hidrelétrica;

 GF_{CRA0} é a garantia física obtida na CRA0.

_

 $^{^{20}}$ Baseada no que estabelece a Portaria 258/2008 para o cálculo das garantias físicas ao longo da motorização de uma usina hidrelétrica.

UHE SALTO OSÓRIO

O projeto de modernização das turbinas e geradores das unidades geradoras 5 e 6 da UHE Salto Osório resultou num ganho de 25,67 MW de potência instalada e de 2,0 p.p. de rendimento médio do conjunto turbina-gerador. Considerando que as unidades geradoras contribuem com montantes iguais, tanto de rendimento médio quanto de potência instalada, os valores considerados no cálculo da garantia física referente à primeira etapa de modernização são apresentados na tabela a seguir.

Tabela 17 – UHE Salto Osório - Resumo dos parâmetros - Modernização

		1 ^a Etapa de modernização	CRA1
Parâmetros	CRA0	(1 Unidade Modernizada) 4x182MW+1x175MW+1x187,835MW	(2 Unidades Modernizadas) 4x182MW+2x187,835MW
Potência Instalada (MW)	1.078,000	1.090,835	1.103,670
Rendimento médio do conjunto turbina-gerador	90%	91,0%	92,0%

O valor de energia firme referente à primeira etapa de modernização é obtido alterando-se os valores da tabela anterior na CRA1, com as eventuais atualizações de vazão efetiva e canal de fuga médio. A tabela a seguir apresenta os valores de energia firme e garantia física para cada unidade modernizada da UHE Salto Osório.

Tabela 18 – UHE Salto Osório - Garantias Físicas no período de Modernização

Usina	Nº de Unidades Modernizadas	Potência (MW)	Rendimento Turbina- Gerador (%)	Energia Firme (MWmed)	Δ Garantia Física (MWmed)	Garantia Física Vigente (MWmed)	Garantia Física Nova (MWmed)
Salto Osório	1	1.090,835	91,0	499,680	4,2	477 F	481,7
Saito OSOFIO	2	1.103,670	92,0	505,474	9,8	477,5	487,3

6. Resumo dos Resultados

A seguir é apresentado o resultado obtido no processo de revisão extraordinária de garantia física das usinas hidrelétricas Salto Osório.

Tabela 19 - Resumo dos Resultados

CEG	Usina	Nº de Unidades	Potência Instalada (MW)	Garantia Física Vigente (MWmed)	Δ Garantia Física (MWmed)	Garantia Física Total (MWmed)
UHE.PH.PR.002659-0.01	Salto Osório	6	1.103,67	477,5	9,8	487,3

A tabela abaixo apresenta os valores de garantia física por unidade modernizada da usina Salto Osório:

Tabela 20 – UHE Salto Osório - Garantias Físicas por unidade modernizada

Usina	Nº de Unidades Modernizadas	Potência (MW)	Rendimento Turbina- Gerador (%)	Acréscimo de Garantia Física (MWmed)	Garantia Física Nova (MWmed)
Calta Osária	1	1.090,835	91,0	4,2	481,7
Salto Osório	2	1.103,670	92,0	9,8	487,3

Anexo 1 — Configuração Hidrotérmica de Referência

Tabela 22 – Configuração Hidrelétrica

Sudeste / Centro-Oes	te / Acre / Rondônia		
A. VERMELHA	DARDANELOS	JAURU	RETIRO BAIXO
A.A. LAYDNER	E. DA CUNHA	JIRAU	RONDON 2
A.S. LIMA	EMBORCACAO	JUPIA	ROSAL
A.S.OLIVEIRA	ESPORA	JURUENA	ROSANA
AIMORES	ESTREITO	L.N. GARCEZ	SA CARVALHO
B. COQUEIROS	ESTRELA	LAJEADO	SALTO
BAGUARI	FONTES	LAJES	SALTO GRANDE
BARRA BONITA	FOZ R. CLARO	M. DE MORAES	SAMUEL
Barra Brauna	FUNIL	MANSO	SANTA BRANCA
BATALHA	FUNIL-GRANDE	MARIMBONDO	SAO DOMINGOS
BILLINGS	FURNAS	MASCARENHAS	SAO MANOEL
CACH.DOURADA	GUAPORE	MIRANDA	SAO SALVADOR
CACONDE	GUARAPIRANGA	NAVANHANDAVA	SAO SIMAO
CACU	GUILMAN-AMOR	NILO PECANHA	SERRA FACAO
CAMARGOS	HENRY BORDEN	NOVA PONTE	SERRA MESA
Cana Brava	I. SOLTEIRA	OURINHOS	SIMPLICIO
CANDONGA	IBITINGA	P. COLOMBIA	SINOP
CANOAS I	IGARAPAVA	P. ESTRELA	SLT VERDINHO
CANOAS II	ILHA POMBOS	P. PASSOS	SOBRAGI
CAPIM BRANC1	IRAPE	P. PRIMAVERA	STA CLARA MG
CAPIM BRANC2	ITAIPU	PARAIBUNA	STO ANTONIO
CAPIVARA	ITIQUIRA I	PEIXE ANGIC	SUICA
CHAVANTES	ITIQUIRA II	PICADA	TAQUARUCU
COLIDER	ITUMBIARA	PIRAJU	TELES PIRES
CORUMBA I	ITUTINGA	PONTE PEDRA	TRES IRMAOS
CORUMBA III	JAGUARA	PROMISSAO	TRES MARIAS
CORUMBA IV	JAGUARI	QUEIMADO	VOLTA GRANDE
Sul			
14 DE JULHO	FUNDAO	MAUA	SALTO PILAO
BAIXO IGUACU	G.B. MUNHOZ	MONJOLINHO	SAO JOSE
Barra Grande	G.P. SOUZA	MONTE CLARO	SAO ROQUE
CAMPOS NOVOS	GARIBALDI	Passo fundo	SEGREDO
CANASTRA	ITA	PASSO REAL	SLT.SANTIAGO
CASTRO ALVES	ITAUBA	PASSO S JOAO	STA CLARA PR
D. FRANCISCA	JACUI	QUEBRA QUEIX	
ERNESTINA	JORDAO	SALTO CAXIAS	
FOZ CHAPECO	MACHADINHO	SALTO OSORIO	
Nordeste	TT D D D C C	B. 60 (4) 6	VTNGO
B. ESPERANCA	ITAPARICA	P. CAVALO	XINGO
COMP PAF-MOX	ITAPEBI	SOBRADINHO	
Norte / Manaus / Belo		ECTREITO TOC	TUCUDUI
BALBINA BELO MONTE	CACH CALDEIR	ESTREITO TOC	TUCURUI
BELO MONTE	COARA NUNES	FERREIRA GOM	
B.MONTE COMP	CURUA-UNA	STO ANT JARI	

Tabela 23 — Configuração Termelétrica

			ibeia 25 -		a. a.ya				
Usina	Subsistema	Combustível	Potência Efetiva (MW)	Fcmax (%)	TEIF (%)	IP (%)	Disponibilidade máxima (Mwmed)	Inflexibilidade (Mwmed)	CVU (R\$/MWh)
ANGRA 1	SE	NUCLEAR	640,0	100	2,06	8,77	571,84	509,8	31,17
ANGRA 2	SE	NUCLEAR	1350,0	100	2,36	13,87	1135,31	1080	20,12
ANGRA 3	SE	NUCLEAR	1405,0	100	2	6,84	1282,72	1282,7	25,58
APARECIDA	N	GAS	166,0	100	14,18	11,47	126,12	126,12	72,98
APOENA	NE	OLEO	147,2	0	17,33	4,87	0,00	0	1851,30
ARAUCARIA	S	GAS	484,2	0	3,11	18,47	0,00	0	0,00
Azulao	N	GAS	295,4	100	3	3,07	277,74	0	558,22
AZULAO II	N	GAS	295,4	100	3	3,07	, 277,74	193,8	150,00
AZULAO IV	N	GAS	295,4	100	3	3,07	, 277,74	193,8	150,00
BAIXADA FLU	SE	GAS	530,0	100	10,83	7,77	435,88	0	100,63
BBF BALIZA	N	BIOMASSA	17,9	92,8	1,17	5,63	15,49	6,66	610,38
BONFIM	N	BIOMASSA	10,0	100	2	2	9,60	4,08	467,82
C. ROCHA	N	GAS	85,4	0	1	20,72	0,00	0	0,00
CAMPINA GDE	NE	OLEO	169,1	0	42,36	10,12	0,00	0	1173,72
CANDIOTA 3	S	CARVAO	350,0	100	19,15	17,01	234,84	210	105,37
CANOAS	S	DIESEL	248,6	100	4,47	16,69	197,85	0	1162,60
CANTA	N	BIOMASSA	10,0	100	2	2	9,60	4,08	467,82
CIDADE LIVRO	SE	BIOMASSA	80,0	100	2,5	5	74,10	0	211,80
Cisframa	S	BIOMASSA	4,0	90	29,32	7,27	2,36	0	377,70
CUBATAO	SE	GAS	249,9	86,4	8,65	11,35	174,85	0	179,86
CUIABA G CC	SE	GAS	529,2	0	8,75	13,95	0,00	0	0,00
CURUMIM	NE	OLEO	31,0	0	20,53	2,14	0,00	0	1260,09
DAIA	SE	DIESEL	44,4	0	2,99	12,95	0,00	0	0,00
DO ATLANTICO	SE	GAS PROCES	490,0	93	0,66	3,84	435,31	419,78	235,02
ERB CANDEIAS	NE	BIOMASSA	16,8	76,8	15,36	11,23	9,69	0	60,00
Fict_N	N	GAS	10,0	0	0	0	0,00	0	0,00
Fict_S	S	GAS	10,0	0	0	0	0,00	0	0,00
FIGUEIRA	S	CARVAO	20,0	90	4,37	6,06	16,17	16,17	330,64
FORTALEZA	NE	GAS	326,6	100	2,17	0,8	316,96	223	277,36
GERAMAR I	N	OLEO	165,9	96	0,3	0,48	158,02	0	1173,68
GERAMAR II	N	OLEO	165,9	96	0,44	0,44	157,87	0	1173,68
GLOBAL I	NE	OLEO	148,8	0	10,62	1,06	0,00	0	1329,51
GLOBAL II	NE	OLEO	148,8	0	13,83	1,08	0,00	0	1329,51
GNA I	SE	GAS	1338,0	100	5,34	2	1241,22	0	238,20
GNA P. ACU 3	SE	GAS	1673,0	100	2,5	2	1598,55	639,27	170,94
GOIANIA II	SE	DIESEL	140,3	0	39,96	10,86	0,00	039,27	2700,59
GUARANI	NE	OLEO	150,0	0	38,41	1,56	0,00	0	1851,30
HF S JOAQUIM	N	BIOMASSA	57,0	100	1,5	4,17	53,80	25,71	758,41
IBIRITE	SE	GAS		100	1,3 4,7	5,8		0	603,99
			235,0				210,97		
J.LACERDA A1	S	CARVAO	100,0	80 92.2	14,82	26,59	50,02	0 33	434,59
J.LACERDA A2	S	CARVAO	132,0 262.0	83,3	11	19,25	79,02 168.80	33 120	372,62 362,67
J.LACERDA B	S	CARVAO	262,0 363.0	84 00.0	9,34	15,4	168,80		362,67
J.LACERDA C	S	CARVAO	363,0	90,9	7,09	15,41	259,33	259,32	311,53
JAGUATIRI II	N	GAS	140,8	100	2,5	1,5	135,22	91,96	219,65
JARAQUI	N CE	GAS	75,5	0	4 6 94	0	0,00	0	0,00 1015 17
JUIZ DE FORA	SE	GAS	87,1	99,9	6,84	3,56	78,18	0	1015,17
LINHARES LRC	SE	GAS	204,0	100	2,19	1,84	195,86	0	600,00
M.CRISTO SUC	N	DIESEL	42,3	96,5	2	1	39,60	0	1008,36
MANAUARA	N	GAS	73,4	100	2,5	0,39	71,29	64,87	0,00

Usina	Subsistema	Combustível	Potência Efetiva (MW)	Fcmax (%)	TEIF (%)	IP (%)	Disponibilidade máxima (Mwmed)	Inflexibilidade (Mwmed)	CVU (R\$/MWh)
MANAUS I	N	GAS	162,9	100	2,5	2	155,65	108,61	97,89
MARACANAU I	NE	OLEO	168,0	0	33,92	14,24	0,00	0	1142,86
MARANHAO III	N	GAS	518,8	100	4,1	, 2,75	483,85	241,63	101,00
MARANHAO IV	N	GAS	337,6	100	1,49	1,37	328,01	0	351,54
MARANHAO V	N	GAS	337,6	100	1,37	1,63	327,55	0	351,54
Marlim Azul	SE	GAS	565,5	100	5	5	510,36	210,42	85,01
MAUA 3	N	GAS	590,8	98,7	9,29	9,4	479,23	264	72,98
N.PIRATINING	SE	GAS	479,3	78,2	5,25	17,89	291,60	0	593,41
N.VENECIA 2	N	GAS	270,5	100	6,05	6,44	237,77	40,44	268,26
NORTEFLU-1	SE	GAS	400,0	100	0	0	400,00	399,99	106,76
NORTEFLU-2	SE	GAS	100,0	100	4,78	8,91	86,74	0	123,77
NORTEFLU-3	SE	GAS	200,0	100	4,78	8,91	173,47	0	237,75
NORTEFLU-4	SE	GAS	126,8	100	4,78	8,91	109,98	0	680,55
NT BARCARENA	N N	GAS	604,5	100	1,1	2,05	585,59	290,42	154,47
O. CANOAS 1	N	GAS	5,5	90	2	6,5	4,54	2,25	285,02
		BIOMASSA							
Onca Pintada	SE		50,0	95	2,84	4,49	44,08	6,86	94,43
P. PECEM I	NE	CARVAO	720,3	100	3,6	6,91	646,39	0	800,40
P. PECEM II	NE	CARVAO	365,0	100	1,43	5,3	340,71	0	781,36
P. SERGIPE I	NE	GAS	1593,0	100	12,92	2,06	1358,61	0	214,16
PALMAPLAN 2	N	BIOMASSA	11,6	100	0,91	1,36	11,34	0	636,95
PALMEIRAS GO	SE	DIESEL	175,6	0	59,55	16,86	0,00	0	2251,43
PAMPA SUL	S	CARVAO	345,0	100	25,27	11,13	229,12	170	56,39
PARNAIBA IV	N	GAS	56,3	96	5,5	4,3	48,88	0	550,06
PARNAIBA V	N	GAS	385,7	94,7	2,95	1,95	347,57	0	104,85
Pau Ferro I	NE	DIESEL	94,1	100	10,82	9,13	76,26	0	3373,78
PAU RAINHA	N	BIOMASSA	10,0	100	2	2	9,60	4,08	467,82
PERNAMBU_III	NE	OLEO	200,8	100	51,34	17,57	80,54	0	1013,94
PETROLINA	NE	OLEO	136,2	96,9	4,93	3,15	121,52	0	2031,13
PIRAT.12 G	SE	GAS	200,0	0	6,57	12,08	0,00	0	470,34
PONTA NEGRA	N	GAS	73,4	89,9	2,5	0,53	64,00	64	0,00
PORTO ITAQUI	N	CARVAO	360,1	100	2,7	5,27	331,91	0	771,76
PORTOCEM I	NE	GAS	1572,0	100	1,5	2,18	1514,66	0	490,87
Potiguar	NE	DIESEL	53,1	0	3,9	14,83	0,00	0	3021,94
Potiguar III	NE	DIESEL	66,4	0	3,89	20,27	0,00	0	3021,90
Predilecta	SE	BIOMASSA	5,0	0	0,87	5,31	0,00	0	0,00
PROSPERI III	NE	GAS	56,0	100	0,5	4,5	53,21	0	129,45
PROSPERID II	NE	GAS	37,4	100	2	4,21	35,11	0	138,53
PROSPERIDADE	NE	GAS	28,0	100	3,67	1,81	26,48	0	195,14
SANTA LUZ	N	BIOMASSA	10,0	100	2	2	9,60	4,08	467,82
SAO SEPE	S	BIOMASSA	8,0	90	13,1	2,44	6,10	0	83,75
SEROPEDICA	SE	GAS	360,0	100	15,42	5,97	286,31	0	513,89
ST.CRUZ 34	SE	OLEO	436,0	0	24,25	18,01	0,00	0	310,41
ST.CRUZ NOVA	SE	GAS	500,0	100	6,22	7,99	431,43	0	384,21
STA VITORIA	SE	BIOMASSA	41,4	93	3,93	13,64	31,94	0	90,00
SUAPE II	NE	OLEO	381,3	100	7,77	10,05	316,33	0	1203,01
SYKUE I	NE	BIOMASSA	30,0	0	, 1,5	3	0,00	0	510,12
T.NORTE 2	SE	OLEO	349,0	0	0,24	1,4	0,00	0	910,86
TAMBAQUI	N	GAS	93,0	0	4	0	0,00	0	0,00
TERMOBAHIA	NE	GAS	185,9	85,5	2,56	9,97	139,43	0	374,87
TERMOCABO	NE	OLEO	49,7	100	1,12	6,06	46,17	0	1159,25

Usina	Subsistema	Combustivel	Potência Efetiva (MW)	Fcmax (%)	TEIF (%)	IP (%)	Disponibilidade máxima (Mwmed)	Inflexibilidade (Mwmed)	CVU (R\$/MWh)
TERMOCEARA	NE	GAS	223,0	98,7	22,9	6,71	158,31	0	565,24
TERMOMACAE	SE	GAS	922,6	100	9,3	3,4	808,35	0	604,67
Termomanaus	NE	DIESEL	143,0	100	13	11,05	110,66	0	3373,78
TERMONE	NE	OLEO	170,9	95	1,98	0,78	157,90	0	1162,73
TERMOPB	NE	OLEO	170,9	95	2,69	0,86	156,63	0	1162,73
TERMOPE	NE	GAS	550,0	100	1,37	6,08	509,48	0	599,12
TERMORIO	SE	GAS	1058,0	93,5	6	5,2	881,52	0	603,34
TRES LAGOAS	SE	GAS	350,0	100	13,86	6,48	281,95	0	320,14
TROMBUDO	S	GAS	28,0	100	3	6	25,53	0	601,40
URUGUAIANA	S	GAS	639,9	0	0,14	56,17	0,00	0	0,00
VALE DO ACU	NE	GAS	367,9	84,3	6,01	18,93	236,32	0	450,86
VIANA	SE	OLEO	174,6	100	0,95	0,48	172,11	0	1173,70
W. ARJONA	SE	GAS	177,1	90	2,5	3,49	149,98	0	603,83
XAVANTES	SE	DIESEL	53,6	100	0,31	0,35	53,25	0	3679,07

Anexo 2 - Ficha de dados - UHE Salto Osório

	CRA0	CRA1
Potência instalada (MW)	1.078,000	1.103,670
Número de unidades geradoras	6	6
Hidrelétrica a jusante	Salto Caxias	Salto Caxias
Tipo de turbina	Francis	Francis
Rendimento médio do conjunto turbina-gerador (%)	90,0	92,0
Produtibilidade Específica (MW/m³/s/m)	0,00882921	0,00899122
Taxa de indisponibilidade forçada - TEIF (%)	0,089	0,089
Indisponibilidade programa - IP (%)	7,158	7,158
Interligação no Subsistema	Sul	Sul
Perda Hidráulica média (%)	2,14	2,14
Canal de fuga médio (m) ²³	326,91	326,92
Influência do vertimento no canal de fuga? (S/N)	S	S
Vazão remanescente (m³/s)	-	-
Vazão mínima do histórico (m³/s)	119	119
Vazão mínima defluente (m³/s)	200	200

Conjunto de máquinas 1	CRA0	CRA1
Número de unidades geradoras	4	4
Potência unitária (MW)	182,000	182,000
Queda líquida de referência (m)	68,40	68,40
Vazão efetiva (m³/s)	301	296

Conjunto de máquinas 2	CRA0	CRA1
Número de unidades geradoras	2	2
Potência unitária (MW)	175,000	187,835
Queda líquida de referência (m)	68,40	67,20
Vazão efetiva (m³/s)	290	311

RESERVATÓRIO	CRA0	CRA1
Volume máximo (hm³)	1.124,00	1.124,00
Volume mínimo (hm³)	1.124,00	1.124,00
Volume de vertimento (hm3)	1.124,00	1.124,00
NA máximo normal (m)	397,00	397,00
NA mínimo normal (m)	397,00	397,00
Área máxima (km²)	56,00	56,00
Área mínima (km²)	56,00	56,00
Regulação (Diária/ Semanal/ Mensal)	Diária	Diária

-

 $^{^{21}}$ Considerando massa específica da água de 1.000 kg/m³ e aceleração da gravidade de 9,81 m/s².

 $^{^{22}}$ Considerando massa específica da água de 998,4 kg/m³ e aceleração da gravidade de 9,789 m/s 2 conforme Ciclo 1 do GTDP.

²³ Canal de fuga médio obtido por simulação com o modelo SUISHI, conforme arquivo de saída CANFUG.rel.

EVAPORAÇÃO LÍQUIDA MÉDIA MENSAL (mm)

Ī	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Ī	9	27	51	69	75	63	43	30	18	-15	-19	-8

VAZÕES DE USOS CONSUNTIVOS²⁴ (m³/s)

Horizonte	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
2028	-0,17	-0,16	-0,16	-0,16	-0,16	-0,16	-0,16	-0,16	-0,16	-0,16	-0,17	-0,19

POLINÔMIOS COTA ÁREA VOLUME

	A0	A1	A2	A3	A4
PVC	3,9700000E+02	0,0000000E+00	0,0000000E+00	0,0000000E+00	0,0000000E+00
PCA	5,6000000E+01	0,0000000E+00	0,0000000E+00	0,0000000E+00	0,0000000E+00

POLINÔMIOS VAZÃO X NÍVEL DE JUSANTE

- OLINOI	100 17127	O X IVEVEE	DE JUSANTE				
HjusRef	QjusMin	QjusMax	A0	A1	A2	A3	A4
323,2924	0,0	10615,4	3,232290E+02	3,484538E-03	-7,868862E-07	8,789053E-11	-3,358451E-15
	10615,4	26450,0	3,201517E+02	2,720596E-03	-1,911848E-07	6,285404E-12	-7,639875E-17
324,5	0,0	2528,2	3,243795E+02	2,866739E-04	2,340129E-06	-1,169675E-09	1,745639E-13
32.73	2528,2	10615,4	3,232290E+02	3,484538E-03	-7,868862E-07	8,789053E-11	-3,358451E-15
	10615,4	26450,0	3,201517E+02	2,720596E-03	-1,911848E-07	6,285404E-12	-7,639875E-17
324,7	0,0	2341,2	3,246304E+02	2,392203E-19	2,488468E-06	-1,239790E-09	1,910673E-13
]	2341,2	10615,4	3,232290E+02	3,484538E-03	-7,868862E-07	8,789053E-11	-3,358451E-15
	10615,4	26450,0	3,201517E+02	2,720596E-03	-1,911848E-07	6,285404E-12	-7,639875E-17
	0,0	2800,0	3,250000E+02	-1,277818E-17	2,130356E-06	-9,851860E-10	1,377078E-13
325	2800,0	10615,4	3,232290E+02	3,484538E-03	-7,868862E-07	8,789053E-11	-3,358451E-15
	10615,4	26450,0	3,201517E+02	2,720596E-03	-1,911848E-07	6,285404E-12	-7,639875E-17

SÉRIE DE VAZÕES MÉDIAS MENSAIS

	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1931	1075	572	529	310	2201	2289	1405	613	1527	1167	606	844
1932	788	1095	1294	2495	1531	1572	882	717	1098	1681	774	1135
1933	409	499	449	264	287	196	229	158	341	741	488	262
1934	398	891	687	834	600	339	285	261	325	733	309	780
1935	416	343	659	367	224	634	719	1449	1875	5161	1452	870
1936	1710	580	383	260	430	3151	688	1532	1450	1201	1032	654
1937	760	590	1043	935	576	448	306	473	449	1651	1830	794
1938	726	1615	540	616	1491	2548	3304	814	711	658	603	449
1939	508	625	1068	666	915	704	837	358	758	502	1703	2763
1940	990	667	396	767	812	443	337	399	380	370	389	552
1941	858	1763	818	603	836	1030	691	1723	897	948	1137	1123
1942	666	1367	1045	1322	967	1221	1254	911	676	723	379	283
1943	318	514	409	261	217	946	671	1105	917	1082	781	406
1944	676	408	1035	456	209	175	157	119	308	218	675	611
1945	201	372	620	275	190	316	1229	395	339	537	452	457
1946	899	3079	2290	951	742	1082	2040	799	772	1557	1083	1235
1947	926	1322	1060	618	436	1148	838	1221	2329	2045	809	908
1948	724	1001	893	687	925	747	518	1540	649	880	1184	355
1949	362	210	395	911	720	913	394	355	424	456	304	257
1950	942	875	1396	521	628	452	522	302	436	2000	879	643
1951	736	1447	1740	545	282	266	326	173	159	1273	1415	1019
1952	466	428	297	314	150	734	491	304	1170	2205	1469	625
1953	611	695	535	527	414	511	326	243	998	1490	1966	824
1954	1386	782	887	580	2694	2163	1247	654	981	1819	816	506
1955	437	336	493	784	1372	3040	3128	1344	1214	450	336	380
1956	571	798	424	1311	1708	964	796	1268	981	643	341	226

 $^{^{\}rm 24}$ Séries de usos consuntivos incrementais à UHE Salto Osório.

-

Г	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1957	422	1069	516	421	412	1031	3038	4402	4769	1788	1429	801
1958	521	348	778	466	257	505	471	836	1818	993	902	955
1959	710	992	502	464	587	738	471	569	840	539	326	237
1960	270	502	407	540	481	684	485	1361	1385	1393	1610	641
1961	562	495	1687	969	897	847	481	257	1234	1620	2113	994
1962	618	1020	1205	537	347	499	362	269	895	2001	946	465
1963	563	1086	950	816	324	277	179	159	191	1616	2566	1111
1964	443	634	498	946	935	908	1050	1474	1441	909	497	571
1965	470	745	739	462	2339	869	2086	1075	1036	2336	1648	1889
1966	1138	2091	1353	508	415	631	927	453	1110	1623	1531	1008
1967	1011	1146	1512	755	327	767	615	592	739	528	637	945
1968	608	535	320	380	316	243	301	217	222	400	723	525
1969	1198	820	798	1638	995	2001	1424	550	534	1278	1287	749
1970	716	607	503	445	719	1496	2001	526	680	1257	547	1098
1971	3094	1176	1129	1189	1898	2367	1724	801	735	969	427	390
1972	675	1366	1289	835	327	808	1030	1794	3212	2659	1130	1124
1973	1354	1292	876	745	1278	1642	1790	1690	2647	2223	1295	670
1974	1124	1170	1091	606	373	745	937	730	1030	500	646	574
1975	782	766	754	463	343	489	479	997	1333	2625	1250	2486
1976	1466	1093	940	985	719	2170	924	1716	1346	914	1434	1109
1977	1209	1304	983	929	386	581	511	618	597	1295	990	939
1978	376	292	442	247	181	251	966	885	910	463	707	611
1979	416	276	354	376	2305	630	506	820	1246	2810	2516	1556
1980	1048	849	1299	625	795	590	1407	1374	2385	1418	1000	1572
1981	1995	1242	557	599	543	468	333	288	332	895	1024	1877
1982	694	740	595	281	272	1354	3407	1138	576	2046	4014	2543
1983	1319	1303	2195	1431	4102	3657	8473	2482	2129	2381	1542	936
1984	683	509	627	766	1010	2005	942	2587	1261	962	1688	1234
1985	464	990	643	1452	581	336	359	220	293	240	388	126
1986	254	742	728	677	991	847	279	493	807	822	795	1219
1987	1104	1276	466	583	3701	2351	1208	707	457	838	718	482
1988	446	595	612	469	2546	1968	723	280	270	514	419	276
1989	1316	2072	1100	1029	1567	465	735	1546	3067	1465	678	391
1990 1991	2299 367	1382 408	678 339	1259 445	1454 308	3062 1227	1910 954	2469 706	2667 272	2408 915	1824 905	902 1074
1991	673	610	883	907	2838	4544	2317	1927	1358	1089	1006	666
1993	658	1182	1145	737	1936	1314	1225	755	1398	3732	718	1112
1993	521	1214	749	573	1242	1987	2174	865	427	697	1335	884
1995	4023	1998	1093	633	349	535	1750	466	770	1757	758	457
1996	1482	2399	2074	1733	408	954	1937	816	1207	2744	1670	1342
1997	1557	2950	1380	429	500	1585	1331	1912	939	3922	3504	1713
1998	1815	1913	2075	4799	2832	811	1571	2699	3426	4565	1175	813
1999	779	1283	936	1058	596	1473	2582	469	623	1426	611	454
2000	667	1001	1075	428	501	559	1018	648	3264	2543	879	643
2001	1436	3021	1574	850	953	1271	1443	1151	883	2971	906	1054
2002	1086	952	627	366	1271	612	379	864	1446	1823	1977	1854
2003	867	1111	1033	449	295	933	794	367	314	588	1027	1848
2004	1217	546	434	393	1200	1300	1494	576	547	1749	1982	768
2005	704	390	272	409	1103	1847	1007	720	3069	3623	1697	536
2006	552	532	526	478	183	155	165	240	599	716	539	863
2007	1009	896	1101	1395	2783	1160	632	430	311	623	1571	1081
2008	1056	602	525	716	1308	1223	818	1284	744	2028	2251	517
2009	529	535	465	209	363	558	1364	1745	2597	3523	1482	1500
2010	1839	1695	1392	2586	3011	1171	1150	1009	356	716	640	2435
2011	1633	2647	1433	1241	455	554	2243	3634	2987	1554	1124	530
2012	855	651	601	705	1151	2709	1298	1132	357	565	658	504
2013	1255	942	1924	1106	784	3297	2712	1296	1632	1677	722	864
2014	1295	537	1474	877	1032	5237	1656	572	1275	2045	815	735
2015	1784	1333	1126	834	830	1597	2994	1013	880	2599	2358	2779
2016	2252	1576	1962	981	1283	1569	1123	1489	1179	1016	777	980
2017	1463	1299	835	479	1082	2165	443	519	266	1459	1962	905
2018	1925	1101	919	851	317	432	462	305	829	2230	1151	494
2019	737	789	1165	868	1298	2429	606	293	387	388	507	614
2020	394	336	281	132	233	957	604	1010	462	283	245	1094
2021	1545	1503	669	308	211	345	404	309	480	1497	681	230