

# CÁLCULO DE MONTANTE DE GARANTIA FÍSICA DE ENERGIA

Retificação do Cálculo e da Revisão Extraordinária do Montante de Garantia Física de Energia da UHE São Roque em conformidade com a série de vazões homologada pela ANA (Resolução nº 1.060/2018)

Setembro de 2023







# CÁLCULO DE MONTANTE DE GARANTIA FÍSICA DE ENERGIA

GOVERNO FEDERAL MINISTÉRIO DE MINAS E ENERGIA MME/SNTEP

Ministério de Minas e Energia Ministro

Alexandre Silveira de Oliveira

**Secretário Executiva** Efrain Pereira da Cruz

Secretário Nacional de Transição Energética e

**Planejamento** Thiago Vasconcellos Barral Ferreira

Secretário Nacional de Energia Elétrica Gentil Nogueira de Sá Junior

Secretário Nacional de Petróleo, Gás Natural e Biocombustíveis

Pietro Adamo Sampaio Mendes

Secretário Nacional de Geologia, Mineração e Transformação Mineral Vitor Eduardo de Almeida Saback

(000)

Empresa de Pesquisa Energética

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei nº 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente (Interina)

Angela Regina Livino de Carvalho

**Diretor de Estudos Econômico-Energéticos e Ambientais** Giovani Vitória Machado

**Diretor de Estudos de Energia Elétrica (Interino)** Giovani Vitória Machado

**Diretora de Estudos de Petróleo, Gás e Biocombustível** Heloisa Borges Bastos Medeiros

Diretora de Gestão Corporativa

Angela Regina Livino de Carvalho

URL: http://www.epe.gov.br

Sede

Esplanada dos Ministérios Bloco "U" - Ministério de Minas e Energia - Sala 744 -  $7^{\circ}$  andar – 70065-900 - Brasília – DF

**Escritório Central** Praça Pio X, 54 – 5º Andar 20091-040 - Rio de Janeiro – RJ Retificação do Cálculo e da Revisão Extraordinária do Montante de Garantia Física de Energia da UHE São Roque em conformidade com a série de vazões homologada pela ANA (Resolução n° 1.060/2018)

Coordenação Geral e Executiva

Angela Regina Livino de Carvalho Giovani Vitória Machado

Coordenação Executiva

Bernardo Folly de Aguiar Renato Haddad Simões Machado

**Equipe Técnica** 

Fernanda Gabriela Batista dos Santos Luis Paulo Scolaro Cordeiro Rafaela Veiga Pillar Thais Iguchi

Nº EPE-DEE-RE-059/2023

Data: 21 de setembro de 2023



# Histórico de Revisões

| Rev. | Data       | Descrição           |
|------|------------|---------------------|
| 0    | 21/09/2023 | Publicação Original |



# **SUMÁRIO**

| SUMĂI        | RIO                                                                                                              | 5        |
|--------------|------------------------------------------------------------------------------------------------------------------|----------|
| ÍNDIC        | CE DE TABELAS                                                                                                    | 6        |
| ÍNDIC        | TE DE FIGURAS                                                                                                    | 6        |
|              | SENTAÇÃO                                                                                                         |          |
|              | troduçãotrodução                                                                                                 |          |
|              | etificação do Cálculo da Garantia Física da UHE São Roque                                                        |          |
| 2.1          | Metodologia                                                                                                      |          |
| 2.2          | Critérios e Premissas                                                                                            |          |
| 2.2          | Resultados obtidos                                                                                               |          |
|              |                                                                                                                  |          |
|              | etificação da Revisão Extraordinária de Garantia Física da UHE São                                               |          |
| -            |                                                                                                                  |          |
| 3.1          | Critérios e Premissas                                                                                            |          |
| 3.2          | Configuração de Referência                                                                                       |          |
| 3.3          | Fatos Relevantes e Características Técnicas Associadas                                                           |          |
| 3.4          | Parâmetros comuns às duas configurações de referência                                                            |          |
| 3.5          | Resultados obtidos                                                                                               |          |
| 4. Re        | esumo dos Resultados                                                                                             | 32       |
|              | lice 1 — Configuração Hidrotérmica de Referência - Cálculo da Gara<br>da UHE São Roque                           |          |
| -            | lice 2 — Ficha de dados — Retificação do Cálculo de Garantia Física<br>ão Roque                                  | da<br>36 |
|              | lice 3 — Configuração Hidrotérmica de Referência - Revisão<br>Ordinária de Garantia Física da UHE São Roque      | 39       |
| -            | lice 4 — Ficha de dados — Retificação da Revisão Extraordinária de<br>tia Física da UHE São Roque                | 43       |
| -            | lice 5 — Parâmetros energéticos médios — Retificação da Revisão<br>ordinária da Garantia Física da UHE São Roque | 46       |
| I.           | UHE São Roque                                                                                                    |          |
| I.1.         | Dados da Curva Colina da Turbina                                                                                 |          |
| I.2.<br>I.3. | <b>7</b>                                                                                                         |          |
| 14           | Cálculo da Perda Hidráulica Média                                                                                | 49       |



# **ÍNDICE DE TABELAS**

| Tabela 1 – UHE São Roque - Garantia Física da Portaria nº 37/2011                                                                       | 11    |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| Tabela 2 – Comparação das garantias físicas do LEN A-5/2011 obtidas nas versões 16 e 17 do modelo Neway                                 | ve 14 |
| Tabela 3 – Proporcionalidade da Carga de Energia – Ano 2016                                                                             | 15    |
| Tabela 4 – Valores de TEIF e IP recomendados pelo BRACIER                                                                               | 15    |
| Tabela 5 – Restrições mensais de agrupamento de intercâmbio                                                                             | 17    |
| Tabela 6 – Média dos CMO e riscos anuais de déficit                                                                                     | 19    |
| Tabela 7 - Cálculo do Benefício Indireto de São Roque                                                                                   | 20    |
| Tabela 8 – Energias Firmes e Garantias Físicas da UHE São Roque                                                                         | 20    |
| Tabela 9 – UHE São Roque - Garantia Física da Portaria SPE/MEE nº108/2016                                                               | 21    |
| Tabela 10 – Proporcionalidade da Carga de Energia – Ano 2021                                                                            | 24    |
| Tabela 11 – Sazonalidade do mercado de energia – Ano 2021 do PDE 2024                                                                   | 24    |
| Tabela 12 – Valores de TEIF e IP estabelecidos na Portaria MME nº 484/2014                                                              | 25    |
| Tabela 13 – UHE São Roque - Fatos Relevantes                                                                                            | 26    |
| Tabela 14 – UHE São Roque – Ponto nominal de operação da turbina                                                                        |       |
| Tabela 15 – UHE São Roque – Fatos Relevantes e Características Técnicas associadas                                                      | 28    |
| Tabela 16 – UHE São Roque – Evaporação líquida: parâmetros comuns às configurações de referência:                                       |       |
| atualizações em relação ao PMO de dezembro de 2015                                                                                      | 29    |
| Tabela 17 – Carga crítica e média dos CMO e riscos anuais de déficit                                                                    |       |
| Tabela 18 – Garantia Física – UHE São Roque                                                                                             | 31    |
| Tabela 19 – Energia Firme e Garantia Física em cada etapa de modernização                                                               | 32    |
| Tabela 20 – Resumo dos Resultados                                                                                                       |       |
| Tabela 21 – UHE São Roque – Garantia Física por etapa de modernização                                                                   | 32    |
| Tabela 22 – Configuração Hidroelétrica                                                                                                  | 33    |
| Tabela 23 – Configuração Termelétrica                                                                                                   | 34    |
| Tabela 24 – Dados Energéticos – UHE São Roque                                                                                           | 36    |
| Tabela 25 – Configuração Hidrelétrica                                                                                                   | 39    |
| Tabela 26 – Configuração Termelétrica                                                                                                   | 40    |
| Tabela 27 – Pontos da curva colina extraídos pela EPE                                                                                   | 47    |
| Tabela 28 – UHE São Roque – Coeficientes do polinômio ajustado para a Curva Colina da Turbina                                           | 48    |
| Tabela 29 – UHE São Roque – Limites Operativos da Turbina                                                                               |       |
| ÍNDICE DE FIGURAS                                                                                                                       |       |
| Figura 1 – Limites térmicos de Transmissão entre subsistemas                                                                            |       |
| Figura 2 – Curva Colina e Pontos da Tabela do Empreendedor                                                                              |       |
| Figura 3 – Gráfico de pontos de operação previstos para UHE São Roque - Vazão Unitária (m³/s) X Queda L (m) X Rendimento da Turbina (%) |       |
|                                                                                                                                         |       |



# **APRESENTAÇÃO**

A presente Nota Técnica registra os estudos efetuados pela Empresa de Pesquisa Energética - EPE para a retificação do cálculo e da revisão extraordinária do montante de garantia física de energia da usina hidrelétrica São Roque decorrente da retificação de sua série de vazões pela Resolução ANA nº 1.060, de 06 de agosto de 2018. Os estudos foram realizados considerando a regulamentação vigente na época do cálculo de cada parcela de garantia física.

Após a publicação da Resolução ANA nº 1.060/2018, São Roque Energia S.A. protocolou na ANEEL, em 22 de agosto de 2018, a Carta SRE-CE-0047/187 por meio da qual formalizou o pedido de revisão da garantia física da UHE São Roque. Este pedido foi reiterado em 7 de novembro de 2019, por meio da Carta SRE-CE-0092/199.

Em 15 de abril de 2020, o Despacho ANEEL nº 1.058, de 15 de abril de 2020, homologou a nova série hidrológica para a UHE São Roque, em conformidade com a série da Resolução ANA nº 1.060/2018. Dado que a alteração na série de vazões não consta no rol de fatos relevantes regidos nos incisos I a VI do artigo 4º da Portaria MME nº 406, de 16 de outubro de 2017, a Superintendência de Concessões e Autorizações de Geração - SCG orientou ao empreendedor, por meio da Nota Técnica nº 259/2020-SCG/ANEEL, que enviasse a solicitação de revisão da garantia física para avaliação do Ministério de Minas e Energia – MME.

Por entender que as alterações de parâmetros hidrológicos são consideradas durante as Revisões Ordinárias de Garantia Física, o pleito apresentado à ANEEL e remetido ao Departamento de Planejamento Energético - DPE não fora enquadrado no bloco de usinas de setembro de 2020 para Revisão Extraordinária de Garantia Física.

Em 27 de maio de 2021, a São Roque Energética S.A. solicitou novamente ao MME, por meio da Carta s/nº, a revisão extraordinária da garantia física de energia para a UHE São Roque. Diante disso, o DPE solicitou à EPE, por meio do Ofício nº 87/2021/DPE/SPEMME, de 14 de junho de 2021, que realizasse as análises quanto à pertinência do pedido de revisão extraordinária, e, caso entendesse cabível, os cálculos necessários à revisão extraordinária da garantia física de energia da UHE São Roque no bloco de setembro de 2021.

Em atendimento ao mencionado Ofício, a EPE encaminhou o Ofício nº 1.497/2021/DEE/EPE, em linha com o entendimento do DPE, quando considerou em suas análises que a alteração de parâmetros hidrológicos, como o caso analisado, deve ser capturada na Revisão Ordinária de Garantia Física.



Por meio do Ofício nº 191/2021/DPE/SPE-MME, de 23 de setembro de 2021, o DPE informou à São Roque Energética S.A. e à Baggio e Costa Filho as devidas justificativas para o não enquadramento da alteração na série de vazões como fato relevante nos termos do art. 4º da Portaria MME nº 406/2017 e, por este motivo, indeferiu o requerimento do agente pela Revisão Extraordinária de Garantia Física de Energia da UHE São Roque.

Em 1º de outubro de 2021, por meio da Carta s/nº, a titular São Roque Energética S.A. apresentou recurso administrativo à decisão proferida, solicitando, de forma alternativa, a retificação da Portaria SPE/MME nº 108/2016, que publicou o montante de garantia física revisado de forma extraordinária, por entender que houve reconhecimento de erro sobre a curva-chave na estação Passo-Caru dentro do período crítico hidrológico.

Para uma avaliação mais criteriosa, fez-se necessário compreender melhor o posicionamento da Agência Nacional de Águas - ANA quanto à procedência dos argumentos apresentados, dado que o pedido do agente presumia a existência de erro material em dados fornecidos pela Agência. Em resposta ao Ofício nº 236/2021/DPE/SPE-MME, a ANA, por meio do Ofício nº 6/2022/SPR/ANA, de 25 de março de 2022, encaminhou o Parecer Técnico nº 7/2022/SPR, que esclareceu que esse tipo de aprimoramento não configura uma correção de erro, mas sim uma atualização, no sentido de aprimorar a informação considerando novos dados disponíveis.

Em consideração aos fatos apresentados anteriormente, corroborado pela manifestação apresentada pela ANA, o DPE entendeu que não foi constatado erro ou inconsistência na documentação utilizada no cálculo da Garantia Física de Energia, publicado na Portaria SPE nº 37/2011, e nem na Revisão Extraordinária dos Montantes de Garantia Física de Energia da UHE São Roque, ocorrida no ano de 2016 e que resultou na publicação da Portaria SPE/MME nº 108/2016.

Por meio da Carta s/nº, de 5 de agosto de 2022, a São Roque Energética S.A. interpôs recurso administrativo, no qual solicita a reconsideração em face do Despacho Decisório nº 11/2022/SPE, de 26 de julho de 2022, que julgou improcedente o Recurso Administrativo interposto pela empresa, com base na Nota Técnica nº 70/2022/DPE/SPE e no Parecer nº 213/2022/CONJUR-MME/CGU/AGU.

Após reunião realizada presencialmente com representantes da SPE, em 26 de agosto de 2022, a São Roque Energética S.A. informou ao Ministério de Minas e Energia, em 13 de setembro de 2022, por meio da Carta s/ nº, que buscou a contratação de parecer técnico hidrológico, a ser lavrado pelo Dr. Carlos Eduardo Morelli Tucci.

A São Roque Energética S.A. encaminhou a Carta s/nº, de 21 de novembro de 2022, por meio da qual é apresentado o resultado do Parecer Técnico do hidrólogo Dr. Carlos E. M. Tucci, e



reiterado o pedido de provimento do recurso administrativo em face do Despacho Decisório nº 11/2022/SPE. O parecer aponta que a modificação da série de 1951 e 1952, relevante para a garantia física, não se configura como uma atualização porque não foram utilizados novos dados ou novas informações. Na realidade, houve uma correção de erro de origem, detectado no próprio estudo original, portanto, se configura como um fato relevante.

Na sequência, por meio do Ofício nº 400/2022/DPE/SPE-MME, de 16 de dezembro de 2022, o Ministério solicitou ao agente que direcionasse o Parecer Técnico formulado pelo Dr. Carlos Tucci à ANA e que buscasse, junto à Agência, tratativas sobre o tema, tendo em vista que o MME é usuário dos dados citados, e define a Garantia Física de Energia com base nos parâmetros homologados pelos órgãos competentes, dentre eles a ANEEL e a ANA.

Portanto, o Ministério encaminhou à Agência o Ofício nº 401/2022/DPE/SPE-MME, de 16 de dezembro de 2022, esclarecendo que aguardaria o posicionamento formal da Agência para prosseguir com a análise do recurso administrativo interposto pela São Roque Energética S.A.

Em 9 de março de 2023, a ANA encaminhou, por meio do Ofício nº 2/2023/SHE/ANA, o Parecer Técnico nº 5/2023/SHE, pelo qual reformulou a sua decisão quanto à série de vazões do posto Passo Caru, aplicável a UHE São Roque, e entendeu que houve um erro com a não utilização, à época, de uma única curva-chave para a estação Passo Caru.

Diante disso, o MME solicitou à EPE, por meio do Ofício nº 97/2023/DPE/SPE-MME, de 24 de março de 2023, que recalculasse a garantia física da UHE São Roque definida na Portaria MME/SPE nº 108/2016, considerando os *decks* e metodologia empregada na ocasião, bem como o parâmetro de vazões retificado pela ANA.

Em seguida, a São Roque Energética S.A., por meio da Carta SRE-CE-0026/23, de 29 de março de 2023, alertou este Ministério sobre a necessidade de se revisitar o cálculo da Garantia Física publicada pela Portaria SPE/MME nº 37/2011, uma vez que esta também é afetada pela série de vazões do posto Passo Caru, de que trata o Ofício nº 2/2023/SHE/ANA.

Por meio do Ofício nº 310/2023/DPOG/SNTEP-MME, de 22 de agosto de 2023, foi solicitado à EPE que recalcule também a garantia física de energia da UHE São Roque, definida na Portaria MME/SPE nº 37/2011, e não somente aquela definida na Portaria MME/SPE nº 108/2016 decorrente da Revisão Extraordinária, conforme solicitado por meio do Ofício nº 97/2022/DPE/SPE-MME.

Portanto, esta nota técnica engloba a retificação tanto do cálculo (Portaria MME/SPE nº 37/2011) quanto da revisão extraordinária (Portaria MME/SPE nº 108/2016) de garantia física da UHE São Roque considerando a correção da série de vazões da bacia do rio Uruguai.



O capítulo 2 apresenta a retificação do cálculo da garantia física referente ao leilão A-5/2011, publicado na Portaria MME/SPE nº 37/2011, considerando a série de vazão corrigida. Os apêndices 1 e 2 descrevem a configuração hidrotérmica e os dados utilizados para a UHE São Roque neste cálculo. No apêndice 2, foram destacados em azul os dados atualizados em decorrência da correção da série de vazões.

O capítulo 3 detalha a revisão extraordinária do lote de março de 2015, referente à Portaria MME/SPE nº 108/2016, com a retificação da série de vazão da bacia do Uruguai. Os apêndices 3 a 5 apresentam, respectivamente, a configuração hidrotérmica do caso de referência, a ficha de dados e os parâmetros médios calculados para a UHE São Roque nesta revisão extraordinária. No apêndice 4, foram destacados em vermelho na ficha de dados os parâmetros considerados de forma distinta em cada configuração de referência, e em azul, os dados referentes à atualização da série de vazões, que são comuns às duas configurações de referência.

O capítulo 4 apresenta um resumo dos resultados das garantias físicas obtidas no cálculo e na revisão extraordinária de garantia física considerando as séries de vazões retificadas da bacia do Uruguai, e a resultante garantia física total da UHE São Roque.



# 1. Introdução

Consoante a Lei nº. 10.848, de 15 de março de 2004, Art. 1°, §7°, "o CNPE proporá critérios gerais de garantia de suprimento, a serem considerados no cálculo das garantias físicas e em outros respaldos físicos para a contratação de energia elétrica, incluindo importação". E, segundo o Decreto 5.163 de 30 de junho de 2004, Art. 4°, §2°, "O MME, mediante critérios de garantia de suprimento propostos pelo CNPE, disciplinará a forma de cálculo da garantia física dos empreendimentos de geração, a ser efetuado pela Empresa de Pesquisa Energética – EPE, mediante critérios gerais de garantia de suprimento".

É importante destacar que, para o cálculo das parcelas de garantia física local, de benefício indireto e do delta de garantia física, foram utilizados os critérios de garantia de suprimento vigentes na época em que cada parcela foi calculada. Adicionalmente, ressalta-se que foi dada a prioridade de utilização das mesmas versões dos modelos computacionais e das mesmas configurações de referência utilizadas em cada ocasião, bem como a série de vazões retificada pela ANA. Apenas no cálculo da garantia física referente à Portaria MME/SPE nº 37/2011 não foi possível empregar a versão usada no cálculo original, por se tratar de uma versão muito antiga. Neste caso, foi considerada uma versão que mais se aproxima da que foi utilizada na época do cálculo.

Os montantes de garantia física, calculados pela EPE e constantes desta nota técnica, somente serão válidos após publicação de portaria do Ministério de Minas e Energia – MME, conforme competência estabelecida no art. 2º, §2º do Decreto nº 5.163, de 30 de julho de 2004.

# 2. Retificação do Cálculo da Garantia Física da UHE São Roque

A garantia física constante no Contrato de Concessão nº 01/2012 e publicada na Portaria nº 37, de 17 de novembro de 2011, foi calculada por ocasião do Leilão 007 de 2011 (LEN A-5/2011), conforme tabela abaixo:

Tabela 1 – UHE São Roque - Garantia Física da Portaria nº 37/2011

| Usina     | Rio    | UF | Número de<br>Unidades | Potência<br>Total<br>(MW) | Garantia Física<br>Local<br>(MWmed) | Benefício<br>Indireto<br>(MWmed) | Garantia Física<br>Total<br>(MWmed) |
|-----------|--------|----|-----------------------|---------------------------|-------------------------------------|----------------------------------|-------------------------------------|
| São Roque | Canoas | SC | 3                     | 135                       | 77,4                                | 13,46                            | 90,9                                |

Os cálculos detalhados da garantia física e do benefício indireto encontram-se na Nota Técnica



EPE-DEE-RE- 101/2011-r1, de 30 de janeiro de 2012.

Segundo as diretrizes vigentes na época para cálculo das garantias físicas de energia de novos empreendimentos, definidas pela Portaria MME nº 258, de 28 de julho de 2008, o cálculo foi realizado utilizando o modelo NEWAVE¹, em sua versão 16, e assumiu como premissa o ajuste de carga crítica para obtenção da igualdade entre o custo marginal de operação – CMO e o custo marginal da expansão – CME, respeitado o limite de risco de déficit de 5%. Não foram simuladas as pequenas centrais hidrelétricas - PCH (usinas com capacidade instalada inferior a 30 MW), com exceção daquelas despachadas centralizadamente.

Ressalta-se que segundo previsto na Portaria MME nº 258/2008 a garantia física é determinada na barra de saída do gerador, sem considerar o abatimento do consumo interno da usina e as perdas elétricas tanto na sua conexão quanto na rede básica.

## 2.1 Metodologia

De forma resumida, a metodologia vigente na época do cálculo da garantia física da UHE São Roque, constante na Portaria MME nº 258/2008, consiste nos passos descritos a seguir, aplicados em uma configuração estática de referência:

- 1) Determinação da *oferta total de garantia física*, correspondente à *garantia física do Sistema Interligado* (Norte/Man/Mac/Belo Monte, Nordeste, Sudeste/Centro-Oeste e Sul), obtida por simulação estática da operação do sistema hidrotérmico, empregando-se o modelo NEWAVE. No processo iterativo de ajuste da oferta total, mantém-se uma proporção fixa entre as ofertas dos subsistemas Sul e Sudeste/C. Oeste, assim como as dos subsistemas Norte/Man/Mac/Belo Monte e Nordeste, havendo, no entanto, uma variação livre da oferta conjunta e da proporção relativa entre estes dois grandes sistemas regionais. O processo é considerado convergido quando, no mínimo, um subsistema de cada sistema regional atende ao critério de igualdade entre o CMO e o CME, admitindo-se uma tolerância. Neste processo, nenhum subsistema poderá estar com riscos de déficit superiores ao risco de déficit estabelecido na Resolução CNPE nº1/2004, bem como os CMO de cada subsistema também devem ser inferiores ou iguais ao CME.
- 2) Rateio da garantia física do SIN, ou oferta total (igual ao somatório das cargas críticas resultantes para os quatro subsistemas), em dois grandes blocos de energia, *oferta hidráulica* EH e *oferta térmica* ET, que são obtidos multiplicando-se a oferta total por um Fator Hidro

\_

<sup>&</sup>lt;sup>1</sup> Modelo desenvolvido pelo Centro de Pesquisas de Energia Elétrica – CEPEL.



- FH e um Fator Térmico FT. Estes fatores correspondem à participação relativa das gerações hidráulica e térmica na geração total. Tais fatores são calculados com base em uma ponderação pelo *custo marginal de operação* CMO das gerações hidráulicas GH e térmicas GT, que são obtidas na simulação com o modelo NEWAVE, utilizando-se configuração estática, horizonte de 5 anos e 2000 séries sintéticas de energias afluentes.
- 3) Rateio da oferta hidráulica do conjunto das usinas hidroelétricas da configuração, ou oferta hidráulica EH, proporcional às energias firmes das usinas hidráulicas, obtidas com auxílio do modelo MSUI, por simulação a usinas individualizadas do sistema integrado puramente hidroelétrico. Utilizam-se, para tanto, séries de vazões históricas e toma-se como referência o período crítico do Sistema Interligado, sendo o resultado do rateio limitado ao valor da disponibilidade máxima de geração contínua da usina.
- 4) Rateio da oferta térmica do conjunto das usinas termelétricas da configuração, por usina termelétrica, sendo o resultado do rateio limitado ao valor da disponibilidade máxima de geração contínua da usina, sendo este excedente distribuído entre as demais térmicas da configuração, na proporção de suas garantias físicas, calculadas no passo anterior. No caso de usinas termelétricas, esta garantia física está condicionada, ainda, à apresentação de contrato firme de suprimento de combustível. Este procedimento tem por objetivo garantir efetivamente o *lastro físico* dos empreendimentos de geração, com vistas à comercialização de energia via contratos.

Cabe ressaltar que segundo previsto na Portaria MME nº 258/2008, a garantia física é determinada na barra de saída do gerador, não sendo considerados nesses montantes os consumos internos das usinas hidrelétricas, nem as perdas elétricas (na rede básica e até o centro de gravidade do submercado no qual a usina esteja localizada).

#### 2.2 Critérios e Premissas

Os itens a seguir apresentam os modelos, os critérios e as premissas considerados neste cálculo.

- Modelos Utilizados:
  - → NEWAVE Versão 17

O cálculo original utilizou a versão 16 do Newave, que foi compilada em 32 bits e utilizava a biblioteca OSL para solução de problemas lineares. Não é possível executar essa versão no sistema computacional da EPE e a compilação em 64 bits não garantiria a reprodutibilidade dos resultados da versão original.



De forma a viabilizar a retificação do cálculo da garantia física da UHE São Roque, foi utilizada a versão 17, que apresentou valores próximos ao da versão 16, como podese observar na tabela a seguir:

Tabela 2 — Comparação das garantias físicas do LEN A-5/2011 obtidas nas versões 16 e 17 do modelo Newave

|                      | Energia<br>Firme<br>(MWmed) | Energia Firme do<br>Sistema<br>(MWmed) | Carga<br>Crítica<br>(MWmed) | Bloco<br>Hidráulico<br>(MWmed) | Garantia<br>Física Local<br>(MWmed) |
|----------------------|-----------------------------|----------------------------------------|-----------------------------|--------------------------------|-------------------------------------|
| Leilão A-5/2011_NW16 | 74,420                      | 55 008                                 | 73 300                      | 57 228                         | 77,4                                |
| Leilão A-5/2011_NW17 | 74,420                      | 55 008                                 | 73 300                      | 57 258                         | 77,5                                |

A versão 17 do Newave se mostrou bem aderente, pois ao rodar o caso original na versão 17, a variação de GF da UHE São Roque foi de 0,1 MWmed (0,13%).

- → MSUI Versão 3.2
- Configuração hidrotérmica estática com 5 anos de simulação, 10 anos de período estático inicial e 5 anos de período estático final.
- Parâmetros do NEWAVE:
  - → Mínimo de 1 e máximo de 45 iterações, 200 simulações *forward* e 20 aberturas
  - → Curva de aversão a risco: não considerada;
  - → Racionamento preventivo: considerado;
  - → Tendência hidrológica: não considerada;
  - → Acoplamento hidráulico entre os subsistemas: não considerado;
  - → Valor percentual de Z<sub>sup</sub> a ser subtraído de L<sub>inf</sub> para o critério de parada estatístico: 10%;
  - → Valor máximo percentual para delta de Z<sub>inf</sub> no critério de parada não estatístico: 0,2%;
  - → Número de deltas de Z<sub>inf</sub> consecutivos a serem considerados no critério não estatístico: 3;
- Proporcionalidade da carga: adotada a proporcionalidade do ano 2016 do Plano Decenal de Expansão de Energia 2020, já incorporada a carga prevista para os trechos isolados dos estados do Acre e Rondônia, que na data em questão já estarão interligados ao SIN. Foi mantida a premissa de ajuste dos sistemas dois a dois, quais sejam: Sudeste/Acre/Rondônia/C.Oeste e Sul Nordeste e Norte/Macapá/Manaus/Belo Monte. A proporcionalidade entre os mercados é apresentada a seguir:



Tabela 3 - Proporcionalidade da Carga de Energia - Ano 2016

| MERCADO DE REFERÊNCIA 2016 - PDE 2020 |         |        |       |  |  |  |  |
|---------------------------------------|---------|--------|-------|--|--|--|--|
| SE/CO/RO                              | S       | NE     | N     |  |  |  |  |
| 45.493                                | 11.748  | 11.119 | 7.329 |  |  |  |  |
| 79,5%                                 | 20,5%   | 60,3%  | 39,7% |  |  |  |  |
| SSE                                   | SSE NNE |        |       |  |  |  |  |
| 57.241                                | 75,6%   | 18.448 | 24,4% |  |  |  |  |
| BRASIL                                |         |        |       |  |  |  |  |
| 75.689                                |         |        |       |  |  |  |  |

- Critério de Garantia de Atendimento à Carga: CMO igual ao CME<sup>2</sup>, em pelo menos um dos subsistemas das regiões SE/CO/AC/RO-S e N/Mac/Man/BM-NE, limitado o risco de déficit em 5%, conforme critério de cálculo de garantia física vigente.
- O Custo Marginal da Expansão CME estimado para o ajuste do 2º Leilão de Energia Nova A-5 de 2010 foi de 113 R\$/MWh, com tolerância de aproximadamente 2%, neste caso, 2 R\$/MWh.
- Taxa de Desconto: 8% ao ano de forma a compatibilizar este parâmetro aos estudos do Plano Decenal de Expansão de Energia 2020.
- Função Custo do Déficit de Energia: Atualizado o valor para R\$ 2.950,00/MWh, de acordo com a metodologia prevista na Nota Técnica "Atualização do valor para patamar único de Custo de Déficit 2011" (EPE-DEE-RE-021 /2011-r0), de 12 de abril de 2011.
- Penalidade por não atendimento ao desvio de água para outros usos: Penalidade associada à violação da restrição = R\$ 2.953,05/MWh, de acordo com a Portaria MME Nº 258 de 28 de julho de 2008.
- Manutenção: Não foi considerada manutenção explícita, e, sim, índices de indisponibilidade forçada TEIF e indisponibilidade programada IP. Para as usinas hidrelétricas, foram considerados os seguintes índices recomendados pelo BRACIER:

Tabela 4 – Valores de TEIF e IP recomendados pelo BRACIER

| Potência (MW) | TEIF (p.u.) | IP (p.u.) |
|---------------|-------------|-----------|
| 10 – 29       | 0,02333     | 0,06861   |
| 30 – 59       | 0,01672     | 0,05403   |
| 60 – 199      | 0,02533     | 0,08091   |
| 200 – 499     | 0,02917     | 0,12122   |

<sup>&</sup>lt;sup>2</sup> Admitida uma tolerância.

.



O valor de potência referido na tabela do BRACIER corresponde à potência unitária da UHE, desta forma, usinas que apresentam mais de um conjunto de máquinas com potências unitárias em diferentes faixas da tabela acima, utilizou-se a média dos índices ponderada pela potência total de cada conjunto.

- Topologia: 4 subsistemas interligados Sudeste/Centro-Oeste/Acre/Rondônia, Sul, Nordeste e Norte/Mac/Man/Belo Monte (vide esquema a seguir).
- Limites de transmissão entre subsistemas: Para a definição dos limites de intercâmbio, foi levada em consideração a entrada em operação de todas as máquinas da UHE Belo Monte. Portanto, tomou-se como base o ano de 2020 do PDE 2020.

São apresentados a seguir os limites térmicos das interligações consideradas no estudo.

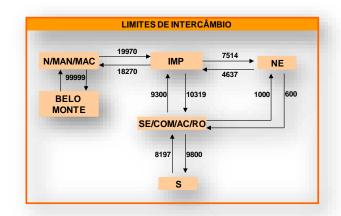



Figura 1 – Limites térmicos de Transmissão entre subsistemas

A versão 16 do Modelo NEWAVE, assim como a versão 17, permite impor restrições máximas para o agrupamento livre de interligações. Este agrupamento é uma combinação linear das interligações que o compõem. Os arquivos do Plano Decenal de Expansão de Energia (PDE) utilizam esta funcionalidade, no entanto estes arquivos representam o mercado a ser atendido em 3 patamares.

A partir das restrições do PDE foram calculadas restrições mensais equivalentes a 1 patamar de mercado. Os valores são apresentados a seguir:



Tabela 5 – Restrições mensais de agrupamento de intercâmbio

| Agrupamento       | Período            | Limite |
|-------------------|--------------------|--------|
| RECEBIMENTO NE    | janeiro-fevereiro  | 8514   |
|                   | março              | 8506   |
|                   | abril              | 8513   |
|                   | maio               | 8514   |
|                   | junho              | 8504   |
|                   | julho a dezembro   | 6700   |
| EXPORTACAO NE     | janeiro            | 5132   |
|                   | fevereiro          | 5131   |
|                   | março              | 5135   |
|                   | abril              | 5133   |
|                   | maio               | 5132   |
|                   | junho              | 5135   |
|                   | julho-agosto       | 5130   |
|                   | setembro           | 5135   |
|                   | outubro            | 5132   |
|                   | novembro-dezembro  | 5135   |
| EXPORTACAO SE-NNE | janeiro a dezembro | 9500   |

Para os períodos estático inicial e final foram considerados os maiores limites anuais.

- Perdas nas interligações: Consideradas incorporadas ao mercado atendido.
- Consumo próprio (consumo interno): Não considerado.
- Restrições Operativas Hidráulicas: para as usinas em operação, foram consideradas as restrições operativas de caráter estrutural recomendadas pelo ONS, segundo revisão do Relatório 3/039/2011 "Inventário das restrições operativas hidráulicas dos aproveitamentos hidrelétricos Revisão-1 de 2011".
- Histórico de vazões: Os históricos de vazões das usinas constantes na configuração foram estendidos até o ano de 2009 de acordo com o Relatório ONS RE-3/242/2010 – "Atualização de séries históricas de vazões - Período 1931 a 2009".
- Usos Consuntivos e vazões remanescentes: o uso consuntivo é modelado como retirada de água sem devolução, enquanto a vazão remanescente retorna a água desviada para a usina de jusante. Ambas estão sujeitas à penalização por não atendimento. Foram considerados os valores extrapolados para o ano de 2016 a partir dos adotados para o Programa Mensal da Operação PMO, de janeiro de 2011, ou a partir dos apresentados nas Declarações/Outorga de Reserva de Disponibilidade Hídrica.
- Configuração de Referência Inicial: composta pelo conjunto de usinas hidrelétricas e termelétricas em operação e todas as usinas que já possuem contrato de concessão ou ato de autorização. A seguir, algumas observações sobre a Configuração Hidrotérmica, apresentada



### no Apêndice 1:

- Configuração de Referência Termelétrica: a configuração termelétrica considerada é baseada no Leilão A-3 de 2011, considerando as usinas que venderam energia neste Leilão. Foram consideradas as atualizações dos custos variáveis das usinas conforme PMO de junho de 2011 do ONS. Para as usinas que venderam energia nos leilões por disponibilidade foram mantidos os parâmetros considerados nos respectivos cálculos de suas garantias físicas. Para as usinas com garantias físicas publicadas na Portaria MME 303/2004, foram mantidos os dados básicos considerados naquela simulação de cálculo de garantia física. Para as usinas constantes no Termo de Compromisso entre Petrobras e ANEEL, foi considerada a modelagem do PDE 2020.
- Configuração de Referência Hidroelétrica: a configuração hidroelétrica considerada é baseada na configuração utilizada para cálculo de Garantias Físicas no Leilão A-3 de 2011.

#### 2.3 Resultados obtidos

De acordo com a Portaria MME nº 258, de 25 de julho de 2008, para uma usina com reservatório de regularização, com usinas a jusante, além do ganho de garantia física local na usina, poderia ser atribuído um benefício decorrente do acréscimo de energia nessas usinas a jusante. Esse benefício, também conhecido como benefício indireto, é calculado pela diferença entre o somatório da energia firme das usinas a jusante na cascata com e sem a usina em questão. Assim, a garantia física de um empreendimento hidrelétrico com reservatório de regularização, com usinas a jusante é obtido pela soma da garantia física local com o benefício indireto.

A UHE São Roque possui reservatório de regularização com as seguintes usinas a jusante: Garibaldi, Campos Novos, Machadinho, Itá e Foz do Chapecó.

Portanto, nesta retificação do cálculo da garantia física da UHE São Roque foram consideradas duas configurações:

- I. Configuração hidrotérmica do Caso Base para o LEN A-5/2011 com a correção das séries de vazões das usinas da bacia do Uruguai, descrita no Apêndice 1;
- II. Configuração I com a exclusão da UHE São Roque.

Da simulação com a configuração I foi obtida a garantia física local da UHE São Roque. O benefício indireto de São Roque foi calculado a partir das configurações I e II, considerando



apenas a simulação pelo modelo MSUI.

## CARGA CRÍTICA E BLOCO HIDRÁULICO

A carga crítica é a máxima oferta global de energia que pode ser atendida ao critério de otimização da expansão do sistema elétrico, assegurada pela igualdade entre os Custos Marginais de Operação – CMO e o Custo Marginal de Expansão – CME, limitados a um risco de déficit de 5%. Esta carga crítica é obtida por simulação estática da operação do sistema hidrotérmico, empregando-se o modelo NEWAVE, em sua versão 17.

A partir dos dados e das premissas apresentados, foram feitas simulações com o modelo NEWAVE de modo a obter a carga crítica que é atendida pela configuração hidrotérmica I.

A tabela a seguir apresenta a carga crítica, os CMO e a média dos riscos anuais de déficit para cada subsistema, considerando o caso com a série de vazão retificada (Configuração I).

Tabela 6 - Média dos CMO e riscos anuais de déficit

| Média dos Custos Marginais de Operação (R\$/MWh) |              |               |        |  |  |  |
|--------------------------------------------------|--------------|---------------|--------|--|--|--|
| SE/CO/Acre/Rondônia                              | S            | NE            | N      |  |  |  |
| 113,54                                           | 113,54       | 113,42        | 111,02 |  |  |  |
| Média dos Risco                                  | os Anuais de | e Déficit (%) |        |  |  |  |
| SE/CO/Acre/Rondônia                              | S            | NE            | N      |  |  |  |
| 1,54                                             | 1,10         | 0,33          | 0,74   |  |  |  |
| Carga C                                          | crítica (MWr | ned)          |        |  |  |  |
| SE/CO/Acre/Rondônia                              | S            | NE            | N      |  |  |  |
| 42.082                                           | 10.867       | 12.278        | 8.093  |  |  |  |
|                                                  |              | Configura     | ção I  |  |  |  |
| Carga Brasil (MWm                                | ied)         | 73.320        | MWmed  |  |  |  |
| Fator Hidráulico                                 | 78,04%       |               |        |  |  |  |
| Bloco Hidráulico (MW                             | 57.222,5     | MWmed         |        |  |  |  |
| Bloco Térmico (MWr                               | med)         | 16.097,5      | MWmed  |  |  |  |

# ENERGIAS FIRMES E GARANTIAS FÍSICAS

As Energias Firmes das usinas hidrelétricas foram obtidas através de simulação com o Modelo MSUI em sua versão 3.2.

Do somatório de energia firme das usinas hidrelétricas em todas as configurações consideradas foi subtraído o valor de 1,39 MWmed referente à perda energética decorrente do deplecionamento do reservatório dos canais da UHE Belo Monte a fim de manter nestes a



vazão mínima ambiental de 300m³/s. A metodologia para obtenção deste valor é detalhada na Nota Técnica EPE-DEE-RE-004/2010-r0 de 25 de janeiro de 2010.

As Garantias Físicas dos aproveitamentos hidroelétricos foram obtidas pela repartição do Bloco Hidráulico, proporcionalmente à Energia Firme de cada UHE.

O benefício indireto dado pela regularização do reservatório da UHE São Roque é apresentado a seguir:

Tabela 7 - Cálculo do Benefício Indireto de São Roque

| Usinas a Jusante | Energia Fi | Δ Energia Firme    |         |
|------------------|------------|--------------------|---------|
| Usinas a Jusante | Config I   | Config II          | (MWmed) |
| Garibaldi        | 83,33      | 81,76              | 1,57    |
| Campos Novos     | 396,11     | 389,83             | 6,28    |
| Machadinho       | 554,96     | 552,16             | 2,8     |
| Itá              | 737,73     | 734,94             | 2,79    |
| Foz do Chapecó   | 419,12     | 417,64             | 1,48    |
| Total            | 2191,25    | 2191,25 2176,33    |         |
|                  |            | Benefício Indireto | 14,9    |

A tabela a seguir apresenta a garantia física retificada para a UHE São Roque:

Tabela 8 — Energias Firmes e Garantias Físicas da UHE São Roque

| Aproveitamento                         | Energia | Garantia Física | Benefício | Garantia Física |
|----------------------------------------|---------|-----------------|-----------|-----------------|
|                                        | Firme   | Local           | Indireto  | Total           |
|                                        | (MWmed) | (MWmed)         | (MWmed)   | (MWmed)         |
| São Roque (série de vazões retificada) | 79,87   | 83,1            | 14,9      | 98,0            |

Como pode ser observado, a retificação das séries de vazões da bacia do Uruguai proporcionou um ganho de 7,1 MWmed na garantia física total da UHE São Roque.

# 3. Retificação da Revisão Extraordinária de Garantia Física da UHE São Roque

O montante de garantia física referente à revisão extraordinária do lote de março de 2015, publicada na Portaria SPE/MME nº108, de 8 de julho de 2016, é apresentado na tabela abaixo:



Tabela 9 – UHE São Roque - Garantia Física da Portaria SPE/MEE nº108/2016

| Usina     | Rio    | UF | Nº de<br>Unidades | Potência<br>Instalada<br>(MW) | Garantia Física<br>Vigente<br>(MWmed) | Δ Garantia<br>Física<br>(MWmed) | Garantia Física<br>Nova<br>(MWmed) |  |
|-----------|--------|----|-------------------|-------------------------------|---------------------------------------|---------------------------------|------------------------------------|--|
| São Roque | Canoas | SC | 3                 | 141,900                       | 90,9*                                 | 0,4                             | 91,3                               |  |

<sup>\*</sup>Do total de 90,9 MWmed de garantia física vigente na época, 13,5 MWmed são decorrentes do benefício de regularização das usinas a jusante, conforme Portaria nº 37, de 17 de novembro de 2011.

O cálculo detalhado desta revisão extraordinária encontra-se na Nota Técnica EPE-DEE-RE-003/2016 – r2, de 28 de junho de 2016.

Segundo as diretrizes vigentes na época da revisão extraordinária dos montantes de garantia física de energia da UHE São Roque, definidas pela Portaria MME nº 861/2010, o cálculo foi realizado conforme metodologia estabelecida na Portaria nº 101, de 22 de março de 2016, considerando as premissas apresentadas na Portaria nº 103, de 22 de março de 2016, e utilizando o modelo NEWAVE, em sua versão 20, e o modelo SUISHI em sua versão 10.

Cabe ressaltar que, segundo previsto na Portaria MME nº 101/2016, a garantia física é determinada na barra de saída do gerador, não sendo considerados nesses montantes os consumos internos das usinas hidrelétricas despachadas centralizadamente, nem as perdas elétricas (na rede básica e até o centro de gravidade do submercado no qual a usina esteja localizada).

#### 3.1 Critérios e Premissas

A Portaria MME nº 861, de 18 de outubro de 2010 estabeleceu os fatos relevantes e a metodologia para revisão extraordinária dos montantes de garantia física de energia de Usina Hidrelétrica despachada centralizadamente no Sistema Interligado Nacional - SIN, com capacidade instalada superior a 30 MW.

O Ministério de Minas e Energia - MME poderá determinar, para a revisão extraordinária dos montantes de garantia física de energia, novos fatos relevantes não considerados nos incisos I a VI do art. 4º da citada Portaria.

As características técnicas referidas no art. 4º da Portaria MME nº 861/2010 deverão ser aprovadas ou homologadas por meio de atos próprios a serem publicados pela ANEEL.

Embora a perda hidráulica e os rendimentos de turbina e gerador, analisados pela ANEEL, sejam os nominais, nas simulações energéticas, os parâmetros adotados serão os médios, pois refletem de maneira mais apropriada as condições da usina ao longo de uma simulação



dinâmica da sua operação, sujeita a variadas condições de queda e vazão. Os parâmetros médios serão obtidos segundo metodologia apresentada na Nota Técnica EPE-DEE-RE-037/2011-r2.

Uma vez definidas pelo MME/ANEEL as características técnicas que constituem fatos relevantes, eventualmente outros parâmetros podem ser impactados. Por exemplo, no caso de alteração de potência instalada ou número de unidades geradoras, poderão ser impactados: rendimento médio do conjunto turbina-gerador, vazão efetiva, perdas de carga no circuito hidráulico de geração, perdas hidráulicas médias, queda de referência, taxas de indisponibilidades das unidades geradoras. Portanto, se faz necessária uma avaliação global do empreendimento que está pleiteando revisão de garantia física.

A partir de uma configuração de referência a EPE estabelecerá as configurações de referência atual CRA0 e CRA1.

A elaboração da CRAO requer a identificação dos valores considerados no cálculo de garantia física vigente, seja no conjunto de arquivos dos modelos Newave e MSUI, utilizados à época do cálculo, seja em correspondências trocadas entre o responsável pelo cálculo e a ANEEL, nos contratos de concessão, etc. Na ausência de informações, serão considerados os valores cadastrados no PMO.

Os dados comuns às duas configurações de referência atual, CRAO e CRA1, serão os mais atualizados possíveis, na época do cálculo.

# 3.2 Configuração de Referência

Para estabelecer as configurações de referência atual CRA0 e CRA1 da revisão extraordinária em questão, a EPE se baseou na configuração adotada para o caso base do Leilão A-5/2016 com a inclusão das usinas vencedoras neste leilão e atualizações referentes aos PMO de maio e junho de 2016. Os itens a seguir apresentam algumas informações a respeito dos modelos, dos critérios e das premissas, estabelecidas na Portaria MME nº 103/2016, considerados:

- Modelos utilizados, conforme definição do MME:
  - → NEWAVE Versão 20
  - → SUISHI Versão 10 (Encad versão 3.26.45)



#### Parâmetros do SUISHI:

- → Funcionalidades específicas ativas em usinas hidrelétricas:
  - Simulação da bacia do rio Paraíba do Sul com regras especiais, considerando a UHE
     Simplício como usina de acoplamento hidráulico. Foi considerado o arquivo default
     com os dados da bacia do rio Paraíba do Sul;
  - Em virtude de a simulação do modelo SUISHI empregar série de vazões naturais para a UHE Simplício, é necessário incluir a vazão remanescente (igual a 90 m3/s) como desvio d'água dessa usina e retorno na UHE Ilha dos Pombos. Na simulação com o modelo NEWAVE essa vazão remanescente já está descontada na série artificial utilizada na UHE Simplício;
  - Adicionalmente, é necessário alterar os usos consuntivos da UHE Simplício no modelo SUISHI devido ao acoplamento hidráulico com a bacia do Alto Paraíba do Sul, ou seja, deve-se considerar o uso consuntivo incremental entre as UHEs Funil e Simplício para a UHE Simplício. No modelo NEWAVE, como não há acoplamento hidráulico entre as bacias do alto e baixo Paraíba do Sul, considera-se: (i) a UHE Funil apontando para a UHE Nilo Peçanha, e (ii) na UHE Simplício o uso consuntivo incremental entre as UHEs Funil e Simplício somado ao uso consuntivo acumulado da UHE Funil;
  - Operação do reservatório de Lajes em paralelo com a bacia do rio Paraíba do Sul (não foi considerada curva de controle de cheias);
  - Curva Guia da UHE Jirau;
  - Restrição de volume máximo operativo sazonal para a UHE Sinop, devido à preservação de lagoas;
  - Uso do reservatório a fio d'água da UHE Belo Monte para atendimento à vazão mínima. Foi considerado o compartilhamento do reservatório com a UHE Belo Monte Complementar;
  - Consideração de posto intermediário de vazões influenciando o nível do canal de fuga da UHE Belo Monte (posto 293);
  - Em virtude de o hidrograma ecológico bianual ainda não estar implementado no modelo SUISHI, são necessárias as seguintes alterações:



- Série de vazões: série de vazões artificiais (posto 292), ao invés da série natural (posto 288);
- Desvios d'água: apenas os usos consuntivos, pois o hidrograma ecológico bianual já foi descontado na série de vazões artificiais.
- Proporcionalidade da carga: adotada a proporcionalidade do ano 2021 do Plano Decenal de Expansão de Energia 2024. A proporcionalidade entre os mercados é apresentada a seguir:

Tabela 10 - Proporcionalidade da Carga de Energia - Ano 2021

| MERCADO DE REFERÊNCIA 2021 - PDE 2024 |        |        |                |  |  |  |  |  |  |
|---------------------------------------|--------|--------|----------------|--|--|--|--|--|--|
| SE/CO/AC/RO/TP                        | S      | NE     | N/MAN/AP/BV/BM |  |  |  |  |  |  |
| 49.638                                | 13.787 | 13.013 | 7.771          |  |  |  |  |  |  |
| 58,9%                                 | 16,4%  | 15,5%  | 9,2%           |  |  |  |  |  |  |
| BRASIL                                |        |        |                |  |  |  |  |  |  |
| 84.209                                |        |        |                |  |  |  |  |  |  |

- Usinas não despachadas centralizadamente não são simuladas individualmente nos modelos computacionais utilizados no cálculo de garantia física. Representa-se, apenas no modelo NEWAVE, uma expectativa de geração agregada por subsistema e por mês. Esse montante é descontado do mercado a ser atendido. Para esta configuração, a referência utilizada é o PMO de junho de 2016.
- Sazonalidade do Mercado de Energia: em virtude da representação da expectativa de geração das usinas não despachadas centralizadamente, e consequentemente, da sazonalidade dessa expectativa de geração, foi também considerada a sazonalidade do mercado referente ao ano de 2021 do PDE 2024 para cada subsistema no modelo NEWAVE e para o SIN no modelo SUISHI.

Tabela 11 – Sazonalidade do mercado de energia – Ano 2021 do PDE 2024

| jan      | fev                                          | mar                                                                              | abr                                                                                                                  | mai                                                                                                                                                                                                               | jun                                                                                                                                                                                                                                                                   | jul                                                                                                                                                                                                                                                                                                                       | ago                                                                                                                                                                                                                                                                                                                                                                           | Set                                                                                                                                                                                                                                                                                                                                                                                                                               | out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,007796 | 1,045268                                     | 1,044764                                                                         | 1,007192                                                                                                             | 0,972360                                                                                                                                                                                                          | 0,959003                                                                                                                                                                                                                                                              | 0,962428                                                                                                                                                                                                                                                                                                                  | 0,988497                                                                                                                                                                                                                                                                                                                                                                      | 0,998328                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,011161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,004170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,999033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,043778 | 1,082944                                     | 1,054730                                                                         | 0,991774                                                                                                             | 0,962907                                                                                                                                                                                                          | 0,966751                                                                                                                                                                                                                                                              | 0,971538                                                                                                                                                                                                                                                                                                                  | 0,975527                                                                                                                                                                                                                                                                                                                                                                      | 0,959353                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,980967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,003524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,006207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,017560 | 1,014332                                     | 1,023093                                                                         | 1,002882                                                                                                             | 0,980134                                                                                                                                                                                                          | 0,954697                                                                                                                                                                                                                                                              | 0,951162                                                                                                                                                                                                                                                                                                                  | 0,970682                                                                                                                                                                                                                                                                                                                                                                      | 1,002651                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,026398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,033237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,023170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0,990155 | 0,993630                                     | 1,004826                                                                         | 1,003410                                                                                                             | 1,004182                                                                                                                                                                                                          | 0,984621                                                                                                                                                                                                                                                              | 0,984107                                                                                                                                                                                                                                                                                                                  | 1,012033                                                                                                                                                                                                                                                                                                                                                                      | 1,019754                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,008687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,002252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,992343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,014    | 1,042                                        | 1,039                                                                            | 1,004                                                                                                                | 0,975                                                                                                                                                                                                             | 0,962                                                                                                                                                                                                                                                                 | 0,964                                                                                                                                                                                                                                                                                                                     | 0,986                                                                                                                                                                                                                                                                                                                                                                         | 0,995                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 1,007796<br>1,043778<br>1,017560<br>0,990155 | 1,007796 1,045268<br>1,043778 1,082944<br>1,017560 1,014332<br>0,990155 0,993630 | 1,007796 1,045268 1,044764<br>1,043778 1,082944 1,054730<br>1,017560 1,014332 1,023093<br>0,990155 0,993630 1,004826 | 1,007796     1,045268     1,044764     1,007192       1,043778     1,082944     1,054730     0,991774       1,017560     1,014332     1,023093     1,002882       0,990155     0,993630     1,004826     1,003410 | 1,007796     1,045268     1,044764     1,007192     0,972360       1,043778     1,082944     1,054730     0,991774     0,962907       1,017560     1,014332     1,023093     1,002882     0,980134       0,990155     0,993630     1,004826     1,003410     1,004182 | 1,007796     1,045268     1,044764     1,007192     0,972360     0,959003       1,043778     1,082944     1,054730     0,991774     0,962907     0,966751       1,017560     1,014332     1,023093     1,002882     0,980134     0,954697       0,990155     0,993630     1,004826     1,003410     1,004182     0,984621 | 1,007796     1,045268     1,044764     1,007192     0,972360     0,959003     0,962428       1,043778     1,082944     1,054730     0,991774     0,962907     0,966751     0,971538       1,017560     1,014332     1,023093     1,002882     0,980134     0,954697     0,951162       0,990155     0,993630     1,004826     1,003410     1,004182     0,984621     0,984107 | 1,007796     1,045268     1,044764     1,007192     0,972360     0,959003     0,962428     0,988497       1,043778     1,082944     1,054730     0,991774     0,962907     0,966751     0,971538     0,975527       1,017560     1,014332     1,023093     1,002882     0,980134     0,954697     0,951162     0,970682       0,990155     0,993630     1,004826     1,003410     1,004182     0,984621     0,984107     1,012033 | 1,007796       1,045268       1,044764       1,007192       0,972360       0,959003       0,962428       0,988497       0,998328         1,043778       1,082944       1,054730       0,991774       0,962907       0,966751       0,971538       0,975527       0,959353         1,017560       1,014332       1,023093       1,002882       0,980134       0,954697       0,951162       0,970682       1,002651         0,990155       0,993630       1,004826       1,003410       1,004182       0,984621       0,984107       1,012033       1,019754 | 1,007796       1,045268       1,044764       1,007192       0,972360       0,959003       0,962428       0,988497       0,998328       1,011161         1,043778       1,082944       1,054730       0,991774       0,962907       0,966751       0,971538       0,975527       0,959353       0,980967         1,017560       1,014332       1,023093       1,002882       0,980134       0,954697       0,951162       0,970682       1,002651       1,026398         0,990155       0,993630       1,004826       1,003410       1,004182       0,984621       0,984107       1,012033       1,019754       1,008687 | 1,007796       1,045268       1,044764       1,007192       0,972360       0,959003       0,962428       0,988497       0,998328       1,011161       1,004170         1,043778       1,082944       1,054730       0,991774       0,962907       0,966751       0,971538       0,975527       0,959353       0,980967       1,003524         1,017560       1,014332       1,023093       1,002882       0,980134       0,984621       0,984107       0,984107       1,012033       1,019754       1,008687       1,002252 |

• Manutenção: Para as usinas hidrelétricas e termelétricas, não foi considerada manutenção explícita, e, sim, índices de indisponibilidade forçada - TEIF e indisponibilidade programada - IP.



Para as usinas hidrelétricas com mais de sessenta meses de operação comercial, após completa motorização<sup>3</sup>, foram considerados os valores de TEIF e IP apurados pelo ONS (referência: PMO maio/2016). Para as demais usinas hidrelétricas, foram considerados os seguintes índices, estabelecidos na estabelecidos na Portaria MME nº 484, de 11 de setembro de 2014, conforme redação da Portaria MME nº 248, de 2 de junho de 2015:

Tabela 12 - Valores de TEIF e IP estabelecidos na Portaria MME nº 484/20144

| Limites (MW)                       | TEIF (%) | IP (%) |
|------------------------------------|----------|--------|
| Potência Unitária <= 29 MW         | 2,068    | 4,660  |
| 29 < Potência Unitária <= 59 MW    | 1,982    | 5,292  |
| 59 < Potência Unitária <= 199 MW   | 1,638    | 6,141  |
| 199 < Potência Unitária <= 699 MW  | 2,133    | 3,688  |
| 699 < Potência Unitária <= 1300 MW | 3,115    | 8,263  |

Para as usinas que apresentam mais de um conjunto de máquinas com potências unitárias em diferentes faixas da tabela acima, utilizou-se a média dos índices ponderada pela potência total de cada conjunto.

Para as usinas termelétricas, foram consideradas as indisponibilidades apuradas pelo ONS<sup>5</sup>, referentes ao período de janeiro de 2011 a dezembro de 2015 (referência: PMO maio/16). Para as usinas que não dispõem de 60 meses de apuração das indisponibilidades, os valores faltantes foram complementados com os índices de referência utilizados nos respectivos cálculos das garantias físicas dos empreendimentos.

- Restrições Operativas Hidráulicas: para as usinas em operação, foram consideradas as restrições operativas de caráter estrutural recomendadas pelo ONS, segundo o Relatório DPP-REL-0046/2016 "Inventário das restrições operativas hidráulicas dos aproveitamentos hidrelétricos Revisão 1 de 2016".
- Histórico de vazões: Os históricos de vazões das usinas constantes na configuração foram estendidos até o ano de 2014, tendo como base o Relatório ONS RE ONS/0205/2015 Dezembro/2015 "Atualização de séries históricas de vazões Período 1931 a 2014".
- Usos Consuntivos e vazões remanescentes: o uso consuntivo é modelado como retirada de água sem devolução, enquanto a vazão remanescente retorna a água desviada para a usina de jusante. Ambas estão sujeitas à penalização por não atendimento. Foram considerados os valores extrapolados para o ano de 2021 a partir dos apresentados nas Declarações/Outorga

<sup>&</sup>lt;sup>3</sup> Data de referência: 31/12/2015

<sup>&</sup>lt;sup>4</sup> Conforme redação da Portaria MME nº 248/2015.

<sup>&</sup>lt;sup>5</sup> De acordo com a Resolução ANEEL nº 614, de 03 de junho de 2014.



de Reserva de Disponibilidade Hídrica e Notas Técnicas da ANA.

- Configuração de referência inicial: composta pelo conjunto de usinas hidrelétricas e termelétricas em operação e todas as usinas que já possuem contrato de concessão ou ato de autorização. A seguir, algumas observações sobre a configuração hidrotérmica, apresentada no Apêndice 3:
  - Configuração de referência termelétrica: é baseada na configuração adotada no caso base do leilão A-5/2016, com a inclusão das usinas vencedoras deste leilão. Foi restaurada a operação comercial da UG1 da UTE P. Médici A, conforme Despacho ANEEL nº 943/2016. Foi retirada da configuração de referência para simulação no NEWAVE a UTE Sol, devido à mudança no tipo de modalidade de despacho desta usina. Foram consideradas as atualizações dos custos variáveis das usinas conforme PMO de maio de 2016.
  - Configuração de referência hidrelétrica: é baseada na configuração adotada no caso base do leilão A-5/2016, com a inclusão das usinas vencedoras deste leilão.

#### 3.3 Fatos Relevantes e Características Técnicas Associadas

As alterações em características técnicas motivadoras da revisão extraordinária de garantia física em questão são decorrentes da aprovação do Projeto Básico, conforme Despacho ANEEL nº 4.747, de 09 de dezembro de 2014.

Os fatos relevantes foram estabelecidos no Ofício nº 019/2015-DPE/SPE-MME <sup>6</sup>, conforme tabela a seguir:

**Fatos Relevantes** De (EVTE) Para (PB) **Fonte dos valores** Potência instalada 135,00 MW 141,90 MW 51,76 m Queda líquida nominal 52,24 m Nota Técnica nº 661/2014-SGH/ANEEL, de 09/12/2014 Perda hidráulica nominal 1,75 m 0,88 m Rendimento nominal da turbina 93,6 % 91,80 %

Tabela 13 – UHE São Roque - Fatos Relevantes

O acréscimo de potência instalada é decorrente de novos levantamentos de campo, de otimizações de arranjo e da substituição do fabricante das turbinas.

\_

<sup>&</sup>lt;sup>6</sup> Ofício nº 019/2015-DPE/SPE-MME, de 30 de março de 2015.



Uma das otimizações no arranjo da UHE São Roque com impacto nos estudos energéticos é a alteração do vertedouro, que, nos estudos de viabilidade era do tipo controlado por comportas, e no projeto básico passou a ser de soleira livre. Isso ensejou uma reavaliação da curva-chave do canal de fuga. A curva-chave revista no projeto básico incorpora novos levantamentos topobatimétricos e considera o efeito de remanso provocado pela UHE Garibaldi. Como consequência, o N.A. normal de jusante passou de 706,5 m para 706,88 m.

O encurtamento do circuito de adução, outra otimização no arranjo da UHE São Roque, resultou na diminuição da perda hidráulica nominal, estimada a partir da equação de perda de carga total.

Equação 1 - UHE São Roque - Equação de perda de carga

$$PH = 7.138623 * 10^{-5} Q_{unit}^2$$

Onde PH se refere à perda de carga total, em metros, em função da vazão turbinada unitária,  $Q_{unit}$ , em m<sup>3</sup>/s.

A alteração de queda líquida nominal é justificada, então, pelas mudanças no N.A. normal de jusante e das perdas hidráulicas nominais.

O novo ponto nominal de operação da turbina da UHE São Roque é apresentado na tabela abaixo.

Tabela 14 – UHE São Roque – Ponto nominal de operação da turbina

| Parâmetros                             | Projeto Básico | Fonte dos valores                            |  |  |  |  |
|----------------------------------------|----------------|----------------------------------------------|--|--|--|--|
| Potência unitária nominal <sup>7</sup> | 48,262 MW      |                                              |  |  |  |  |
| Vazão nominal                          | 111,05 m³/s    |                                              |  |  |  |  |
| Queda líquida de referência            | 48,6 m         | - Curva colina da turbina (tabela de pontos) |  |  |  |  |
| Rendimento nominal                     | 91,784%        | -                                            |  |  |  |  |

As características técnicas associadas aos fatos relevantes que serão consideradas de forma distinta nas duas configurações de referência (CRA0 e CRA1) são: polinômio de vazão em função do nível de jusante, queda líquida de referência, perda hidráulica média, rendimento do conjunto turbina-gerador, aceleração da gravidade, massa específica da água, vazão efetiva e canal de fuga médio<sup>8</sup>.

A CRAO procura refletir as condições do cálculo da garantia física vigente, desse modo, os valores considerados para os fatos relevantes e para as características técnicas associadas

<sup>&</sup>lt;sup>7</sup> Potência no eixo da turbina já descontadas as perdas nos mancais.

<sup>&</sup>lt;sup>8</sup> O canal de fuga médio a ser considerado em cada uma das configurações é a média de todo o histórico de vazões, obtido na simulação com o modelo SUISHI.



serão os constantes no conjunto de arquivos NW utilizados no cálculo original da revisão extraordinária de garantia física da UHE São Roque. Cabe ressaltar, entretanto, que as indisponibilidades foram atualizadas na época conforme estabelece o artigo 5º da Portaria MME nº 484/2014, com redação alterada pela Portaria MME nº 248/2015. Por se tratar de uma usina que não havia entrado em operação comercial na ocasião da revisão extraordinária, foram considerados os valores constantes no anexo da referida portaria.

Adicionalmente, foram atualizadas a série de vazões e a respectiva vazão mínima do histórico de acordo com a série de vazões retificada no Despacho ANEEL nº 1.058, de 15 de abril de 2020.

Empregando-se a metodologia apresentada na Nota Técnica EPE-DEE-037/2011-r2 e utilizando-se a curva colina da turbina<sup>9</sup> e a equação de perda de carga foram obtidos os valores médios de rendimento do conjunto turbina-gerador e perda hidráulica, que serão considerados na CRA1.

O rendimento adotado para o gerador foi de 98%, conforme Despacho ANEEL nº 4.747/2014.

Tabela 15 – UHE São Roque – Fatos Relevantes e Características Técnicas associadas

| Fatos Relevantes e                     |                    |                          |                                                                                  |  |  |  |  |
|----------------------------------------|--------------------|--------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Características                        | CRA0               | CRA1                     | Fonte dos valores                                                                |  |  |  |  |
| Técnicas Associadas                    |                    |                          |                                                                                  |  |  |  |  |
| Potência Instalada                     | 135 MW             | 141,9 MW                 | CRA0: Deck LEN A-5/2011<br>CRA1: Despacho ANEEL nº 4.747/2014                    |  |  |  |  |
| Queda Líquida de referência            | 48,6 m             | 48,6 m                   | CRA0: Deck LEN A-5/2011<br>CRA1: Nota Técnica nº 661/2014-SGH/ANEEL              |  |  |  |  |
| Perda Hidráulica média                 | 0,9 m              | 0,60 m                   | CRA0: Deck LEN A-5/2011<br>CRA1: Apêndice 5                                      |  |  |  |  |
| Rendimento do conjunto turbina-gerador | 91,5%              | 90,5%                    | CRA0: Deck LEN A-5/2011<br>CRA1: Apêndice 5                                      |  |  |  |  |
| Aceleração da gravidade                | 9,81 m/s²          | 9,77907 m/s <sup>2</sup> | CRA0: Deck LEN A-5/2011<br>CRA1: Declaração do concessionário - RE lote mar/2015 |  |  |  |  |
| Massa específica da<br>água            | 1000 kg/m³         | 995,798 kg/m³            | CRA0: Deck LEN A-5/2011<br>CRA1: Declaração do concessionário - RE lote mar/2015 |  |  |  |  |
|                                        | A0: 7,0559683E+02  | A0: 7,0580493E+02        |                                                                                  |  |  |  |  |
|                                        | A1: 3,6996012E-03  | A1: 4,2261713E-03        | -<br>_ CRA0: Deck LEN A-5/2011                                                   |  |  |  |  |
| PVNJ                                   | A2: -3,0281875E-06 | A2: -3,5084141E-06       | CRA1: Projeto Básico                                                             |  |  |  |  |
|                                        | A3: 1,4261539E-09  | A3: 1,6319730E-09        | (Despacho ANEEL nº 4.747/2014)                                                   |  |  |  |  |
|                                        | A4: -2,2284704E-13 | A4: -2,7135183E-13       | -                                                                                |  |  |  |  |
| Vazão efetiva                          | 103 m³/s           | 110 m³/s                 | Compatível com os demais dados                                                   |  |  |  |  |
| Canal de fuga médio                    | 706,44 m           | 706,77 m                 | Simulação do modelo SUISHI                                                       |  |  |  |  |

-

<sup>&</sup>lt;sup>9</sup> A curva colina da turbina em formato gráfico foi disponibilizada no Relatório de Transposição de Modelo Reduzido, documento nº P00136/14-4T-RL-0001, revisão 0D, de 28 de novembro de 2013. Em formato tabelado, como anexo do Projeto Básico.



## 3.4 Parâmetros comuns às duas configurações de referência

Os parâmetros comuns às duas configurações de referência são os mais atualizados possíveis na época do cálculo e, portanto, em decorrência da aprovação do Projeto de Básico, alguns parâmetros foram atualizados em relação ao PMO, tais como: evaporação, série de vazões<sup>10</sup> e vazão mínima do histórico em conformidade com a série de vazões. Os demais são os constantes no PMO de dez/15.

Tabela 16 – UHE São Roque – Evaporação líquida: parâmetros comuns às configurações de referência: atualizações em relação ao PMO de dezembro de 2015

| Evaporação Líquida | Jan | Fev | Mar | Abr | Mai | Jun | Jul | Ago | Set | Out | Nov | Dez | Fonte dos valores   |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------|
| PMO                | -56 | -39 | -6  | 46  | 79  | 87  | 82  | 71  | 38  | -9  | -41 | -62 | PMO dez/15          |
| CRA0 e CRA1        | 4   | 23  | 40  | 53  | 59  | 48  | 25  | 4   | -6  | -26 | -41 | -26 | Despacho 4.747/2014 |

#### 3.5 Resultados obtidos

## CARGA CRÍTICA E BLOCO HIDRÁULICO

A carga crítica é a máxima oferta global de energia que pode ser atendida ao critério de otimização da expansão do sistema elétrico, assegurada pela igualdade entre os Custos Marginais de Operação – CMO e o Custo Marginal de Expansão – CME, limitados a um risco de déficit de 5%. Esta carga crítica é obtida por simulação estática da operação do sistema hidrotérmico, empregando-se o modelo NEWAVE, em sua versão 20.

A partir dos dados e das premissas apresentados para as duas configurações de referência, foram feitas simulações com o modelo NEWAVE de modo a obter a carga crítica que é atendida por cada uma das configurações hidrotérmicas.

A carga crítica, os CMO e a média dos riscos anuais de déficit para cada subsistema e em cada configuração são detalhados a seguir.

1

<sup>&</sup>lt;sup>10</sup> Conforme série de vazões constante no Despacho ANEEL nº 1.058, de 15 de abril de 2020.



Tabela 17 – Carga crítica e média dos CMO e riscos anuais de déficit

|                       | Média dos Custos Marginais d | e Operação   | (R\$/MWh) |        |  |  |  |  |  |
|-----------------------|------------------------------|--------------|-----------|--------|--|--|--|--|--|
|                       | SE/CO/Acre/Rondônia          | S            | NE        | N      |  |  |  |  |  |
| CRA0                  | 192,95                       | 192,95       | 192,95    | 192,95 |  |  |  |  |  |
| CRA1                  | 192,80                       | 192,80       | 192,80    | 192,80 |  |  |  |  |  |
|                       | Média dos Riscos Anuai       | s de Déficit | (%)       |        |  |  |  |  |  |
|                       | SE/CO/Acre/Rondônia          | S            | NE        | N      |  |  |  |  |  |
| CRA0                  | 0,56                         | 0,36         | 0,00      | 0,23   |  |  |  |  |  |
| CRA1                  | 0,49                         | 0,34         | 0,00      | 0,28   |  |  |  |  |  |
| Carga Crítica (MWmed) |                              |              |           |        |  |  |  |  |  |
|                       | SE/CO/Acre/Rondônia          | S            | NE        | N      |  |  |  |  |  |
| CRA0                  | 52.153                       | 14.486       | 13.672    | 8.164  |  |  |  |  |  |
| CRA1                  | 52.138                       | 14.482       | 13.668    | 8.162  |  |  |  |  |  |
|                       |                              | CRA0         | CRA1      |        |  |  |  |  |  |
| Carga Bras            | sil                          | 73.999       | 73.974    | MWmed  |  |  |  |  |  |
| Fator Hidra           | áulico                       | 77,17%       | 77,29%    |        |  |  |  |  |  |
| Bloco Hidr            | áulico                       | 57.103,4     | 57.172,1  | MWmed  |  |  |  |  |  |
| Bloco Térn            | nico                         | 16.895,7     | 16.801,8  | MWmed  |  |  |  |  |  |

O bloco hidráulico obtido a partir da ponderação pelo custo marginal de operação das gerações hidráulica e térmica encontradas durante a simulação final do NEWAVE, que definiu a carga crítica para a CRAO, corresponde a 57.103,4 MWmed (77,17% da carga crítica de 73.999 MWmed), e para a CRA1, corresponde a 57.172,1 MWmed (77,29% da carga crítica de 73.974 MWmed).

# ENERGIAS FIRMES E GARANTIAS FÍSICAS EM CADA CONFIGURAÇÃO

As energias firmes da UHE São Roque foi obtida em cada uma das configurações através de simulação com o modelo SUISHI em sua versão 10. A energia firme total do sistema hidráulico na CRAO resultou em 54.841,69 MWmed e na CRAO, 54.847,08 MWmed.

As garantias físicas foram obtidas em cada uma das configurações pela repartição do bloco hidráulico proporcionalmente às energias firmes obtidas em cada configuração. A garantia física nova é, então, obtida como a soma da garantia física vigente mais a diferença entre as garantias físicas obtidas nas duas configurações de referência.

Para esta revisão extraordinária, será considerada como garantia física vigente da UHE São Roque a garantia física que foi obtida no capítulo 2 desta nota técnica.

O valor de garantia física definido nesta revisão extraordinária para a usina São Roque é discriminado a seguir:



Tabela 18 - Garantia Física - UHE São Roque

| Usina     | •      | a Firme<br>med) |      | ia Física<br>med) | Δ Garantia<br>Física | Garantia Física<br>Vigente | Garantia Física<br>Nova |  |
|-----------|--------|-----------------|------|-------------------|----------------------|----------------------------|-------------------------|--|
|           | CRA0   | CRA1            | CRA0 | CRA1              | (MWmed)              | (MWmed)                    | (MWmed)                 |  |
| São Roque | 79,446 | 79,980          | 82,7 | 83,4              | 0,7                  | 98,011                     | 98,7                    |  |

Conforme pode ser observado, a retificação das séries de vazões da bacia do Uruguai proporcionou um ganho de 0,3 MWmed no delta de garantia física da UHE São Roque.

## GARANTIAS FÍSICAS NO PERÍODO DE MODERNIZAÇÃO

Para a discretização da garantia física ao longo do processo de modernização de uma usina hidrelétrica será adotada a seguinte metodologia <sup>12</sup>: a garantia física em cada etapa de modernização é a soma da garantia física local vigente da UHE com o delta de garantia física da respectiva etapa de modernização.

Equação 2 – Garantia Física em cada etapa de modernização

$$GF_i = GF_{vigente} + \Delta GF_i$$

Onde

 $GF_i$  é a garantia física local na etapa de modernização i;

GF<sub>vigente</sub> é a garantia física local vigente da usina hidrelétrica;

 $\Delta GF_i$  é o delta de garantia física vigente na etapa de modernização i.

Para se obter o delta de garantia física em cada etapa de modernização, calcula-se o produto da garantia física da etapa final (CRA1) pela razão entre a energia firme da respectiva etapa de modernização e a energia firme da etapa final, limitado pela potência disponível correspondente, e subtrai-se a garantia física obtida na CRA0.

Equação 3 – Delta de Garantia Física em cada etapa de modernização

$$\Delta GF_{i} = min\left\{\frac{EF_{i}}{EF_{CRA1}}GF_{CRA1}, P_{disp}\right\} - GF_{CRA0}$$

Onde

 $\Delta GF_i$  é o delta de garantia física vigente na etapa de modernização i;

 $EF_i$  é a energia firme na etapa de modernização i;

1

<sup>11</sup> Já incluído o montante referente ao benefício indireto, igual a 14,9 MWmed, calculado considerando a retificação das séries de vazões da bacia do rio Uruquai.

<sup>&</sup>lt;sup>12</sup> Baseada no que estabelece a Portaria MME nº 101/2016 para o cálculo das garantias físicas ao longo da motorização de uma usina hidrelétrica.



 $EF_{CRA1}$  é a energia firme obtida na CRA1;

 $GF_{CRA1}$  é a garantia física obtida na CRA1;

 $P_{disp}$  é a potência disponível da usina hidrelétrica;

 $GF_{CRA0}$  é a garantia física obtida na CRA0.

O benefício indireto é adicionado à última etapa de modernização.

A tabela abaixo apresenta o resultado obtido para cada etapa de modernização da UHE São Roque:

Tabela 19 - Energia Firme e Garantia Física em cada etapa de modernização

| Usina     | Ei       | nergia Firm | e (MWmed) |        | Garantia Física de Energia (MWmed) |      |      |      |
|-----------|----------|-------------|-----------|--------|------------------------------------|------|------|------|
|           | Completa | 1 UG        | 2 UG      | 3 UG   | Completa                           | 1 UG | 2 UG | 3 UG |
| São Roque | 79,980   | 41,008      | 66,350    | 79,980 | 98,7                               | 43,2 | 69,6 | 98,7 |

### 4. Resumo dos Resultados

A nova garantia física da UHE São Roque será composta pela soma da garantia física vigente, definida no capítulo 2 desta nota técnica, e do incremento de garantia física obtido na retificação da revisão extraordinária, conforme apresentado no capítulo 3.

A tabela a seguir apresenta um resumo do resultado obtido no processo de retificação do cálculo e da revisão extraordinária de garantia física da usina hidrelétrica São Roque.

Tabela 20 – Resumo dos Resultados

|                       |           | Nº de    | Potência          |                                     | ação da<br>37/2011               | Retificação da<br>PRT nº 108/2016 | Garantia Física<br>Total<br>(MWmed) |  |
|-----------------------|-----------|----------|-------------------|-------------------------------------|----------------------------------|-----------------------------------|-------------------------------------|--|
| CEG                   | Usina     | Unidades | Instalada<br>(MW) | Garantia<br>Física Local<br>(MWmed) | Benefício<br>Indireto<br>(MWmed) | Δ Garantia Física<br>(MWmed)      |                                     |  |
| UHE.PH.SC.030938-9.01 | São Roque | 3        | 141,900           | 83,1                                | 14,9                             | 0,7                               | 98,7                                |  |

A tabela abaixo apresenta os valores de garantia física de energia por etapa de modernização da UHE São Roque:

Tabela 21 – UHE São Roque – Garantia Física por etapa de modernização

| CEG                   | Usina     | Garantia Física de Energia (MWmed) |      |      |      |  |  |
|-----------------------|-----------|------------------------------------|------|------|------|--|--|
| CEG                   | USIIIa    | Completa                           | 1 UG | 2 UG | 3 UG |  |  |
| UHE.PH.SC.030938-9.01 | São Roque | 98,7                               | 43,2 | 69,6 | 98,7 |  |  |

O benefício indireto foi considerado na última unidade.



# Apêndice 1 — Configuração Hidrotérmica de Referência - Cálculo da Garantia Física da UHE São Roque

Tabela 22 – Configuração Hidroelétrica

|                       |                     | -            |              |
|-----------------------|---------------------|--------------|--------------|
| Sudeste / Centro-Oest | e / Acre / Rondônia |              |              |
| A. VERMELHA           | DARDANELOS          | JAGUARI      | QUEIMADO     |
| A.A. LAYDNER          | E. DA CUNHA         | JAURU        | RETIRO BAIXO |
| A.S. LIMA             | EMBORCACAO          | JIRAU        | RONDON 2     |
| A.S.OLIVEIRA          | ESPORA              | JUPIA        | ROSAL        |
| AIMORES               | ESTREITO            | L.N. GARCEZ  | ROSANA       |
| B. COQUEIROS          | FIC MAUA            | LAJEADO      | SA CARVALHO  |
| BAGUARI               | FONTES              | LAJES        | SALTO        |
| BARRA BONITA          | FOZ R. CLARO        | M. DE MORAES | SALTO GRANDE |
| BATALHA               | FUNIL               | MANSO        | SAMUEL       |
| BILLINGS              | FUNIL-GRANDE        | MARIMBONDO   | SANTA BRANCA |
| CACH.DOURADA          | FURNAS              | MASCARENHAS  | SAO DOMINGOS |
| CACONDE               | GUAPORE             | MIRANDA      | SAO SALVADOR |
| CACU                  | GUARAPIRANGA        | NAVANHANDAVA | SAO SIMAO    |
| CAMARGOS              | GUILMAN-AMOR        | NILO PECANHA | SERRA FACAO  |
| Cana Brava            | HENRY BORDEN        | NOVA PONTE   | SERRA MESA   |
| CANDONGA              | I. SOLT. EQV        | OURINHOS     | SIMPLICIO    |
| CANOAS I              | IBITINGA            | P. COLOMBIA  | SLT VERDINHO |
| CANOAS II             | IGARAPAVA           | P. ESTRELA   | SOBRAGI      |
| CAPIM BRANC1          | ILHA POMBOS         | P. PASSOS    | STA CLARA MG |
| CAPIM BRANC2          | IRAPE               | P. PRIMAVERA | STO ANTONIO  |
| CAPIVARA              | ITAIPU              | PARAIBUNA    | TAQUARUCU    |
| CHAVANTES             | ITIQUIRA I          | PEIXE ANGIC  | TELES PIRES  |
| COLIDER               | ITIQUIRA II         | PICADA       | TRES MARIAS  |
| CORUMBA I             | ITUMBIARA           | PIRAJU       | VOLTA GRANDE |
| CORUMBA III           | ITUTINGA            | PONTE PEDRA  |              |
| CORUMBA IV            | JAGUARA             | PROMISSAO    |              |
| Sul                   |                     |              |              |
| 14 DE JULHO           | FUNDAO              | MACHADINHO   | SALTO CAXIAS |
| BAIXO IGUACU          | G.B. MUNHOZ         | MAUA         | SALTO OSORIO |
| BARRA GRANDE          | G.P. SOUZA          | MONJOLINHO   | SALTO PILAO  |
| CAMPOS NOVOS          | GARIBALDI           | MONTE CLARO  | SAO JOSE     |
| CASTRO ALVES          | ITA                 | PASSO FUNDO  | SEGREDO      |
| D. FRANCISCA          | ITAUBA              | PASSO REAL   | SLT.SANTIAGO |
| ERNESTINA             | JACUI               | PASSO S JOAO | STA CLARA PR |
| FOZ CHAPECO           | JORDAO              | QUEBRA QUEIX |              |
| Nordeste              |                     |              |              |
| B. ESPERANCA          | FIC QUEIMADO        | ITAPARICA    | SOBRADINHO   |
| COMP PAF-MOX          | FIC RETIRO B        | ITAPEBI      | XINGO        |
| FIC IRAPE             | FIC T.MARIAS        | P. CAVALO    |              |
| Norte / Manaus / Belo | Monte               |              |              |
| BALBINA               | CURUA-UNA           | FIC LAJEADO  | STO ANT JARI |
| BELO MONTE            | ESTREITO TOC        | FIC PEIXE AN | TUCURUI      |
| B.MONTE COMP          | FERREIRA GOM        | FIC SAO SALV |              |
| COARA NUNES           | FIC CANA BR         | FIC SERRA M  |              |



Tabela 23 – Configuração Termelétrica

|                               |                            | Tabe                     | la 25 – C                   | Joinigu      | ii açao     | i Ci ii        | ieietrica                            |                            |                  |
|-------------------------------|----------------------------|--------------------------|-----------------------------|--------------|-------------|----------------|--------------------------------------|----------------------------|------------------|
| Usina                         | Subsistema                 | Combustível              | Potência<br>Efetiva<br>(MW) | Fcmax<br>(%) | TEIF<br>(%) | IP<br>(%)      | Disponibilidade<br>máxima<br>(Mwmed) | Inflexibilidade<br>(Mwmed) | CVU<br>(R\$/MWh) |
| ALEGRETE                      | S                          | OLEO                     | 66                          | 100          | 14,91       | 12,25          | 49,28                                | 0                          | 564,57           |
| ALTOS<br>ANGRA 1              | NE<br>SE/CO/AC/BO          | DIESEL                   | 13,2                        | 100          | 2<br>3      | 1,3            | 12,77                                | 0                          | 534,60           |
| ANGRA 1<br>ANGRA 2            | SE/CO/AC/RO<br>SE/CO/AC/RO | NUCLEAR<br>NUCLEAR       | 657<br>1350                 | 100<br>100   | 3           | 20<br>8        | 509,83<br>1204,74                    | 509,82<br>1080             | 21,49<br>18,77   |
| ANGRA 3                       | SE/CO/AC/RO                | NUCLEAR                  | 1405                        | 100          | 3           | 7,4            | 1262                                 | 1080                       | 20,17            |
| APARECIDA B1                  | N/MAN                      | GAS                      | 130,5                       | 49           | 2           | 7              | 58,28                                | 56                         | 350,72           |
| APARECIDA B2<br>ARACATI       | N/MAN<br>NE                | GAS<br>DIESEL            | 121<br>11,5                 | 59,5<br>100  | 2<br>2      | 7<br>1,3       | 65,62<br>11,12                       | 64<br>0                    | 352,32<br>534,60 |
| ARAUCARIA_T                   | S                          | GAS                      | 484,5                       | 100          | 2           | 3,5            | 458,19                               | 0                          | 219,00           |
| BAHIA 1                       | NE                         | GAS                      | 31,6                        | 98           | 4           | 2              | 29,13                                | 0                          | 456,99           |
| BAIXADA FLU<br>BATURITE       | SE                         | GAS                      | 530                         | 100          | 2<br>2      | 3<br>1,3       | 503,82<br>11.12                      | 0<br>0                     | 85,36<br>534.60  |
| Cacimbaes                     | NE<br>SE/CO/AC/RO          | DIESEL<br>GNL            | 11,5<br>126,6               | 100<br>100   | 1,3         | 1,3<br>2,7     | 121,58                               | 0                          | 534,60<br>122,55 |
| CAMACARI G                    | NE                         | GAS                      | 350                         | 91           | 0,9         | 8,2            | 289,75                               | 2,3                        | 360,81           |
| Camacari MI                   | NE                         | Oleo Combu               | 148                         | 100          | 4           | 2              | 139,24                               | 0                          | 511,90           |
| Camacari PI<br>CAMPINA GRANDE | NE<br>NE                   | Oleo Combu<br>OLEO COMB  | 148<br>164,2                | 100<br>100   | 4<br>1,3    | 2<br>2,7       | 139,24<br>157,69                     | 0<br>0                     | 511,90<br>362,39 |
| CAMPO MAIOR                   | NE                         | DIESEL                   | 13,1                        | 100          | 2           | 1,3            | 12,67                                | 0                          | 534,60           |
| CANDIOTA 3                    | S                          | CARVAO                   | 350                         | 100          | 5,5         | 4,1            | 317,19                               | 210                        | 52,87            |
| CANOAS_TC<br>CARIOBA          | S<br>SE/CO/AC/RO           | GAS<br>OLEO              | 250,6<br>36                 | 100<br>88,9  | 1,75<br>0   | 6,74<br>8      | 229,62<br>29,44                      | 0<br>0                     | 541,93           |
| CAUCAIA                       | NE                         | DIESEL                   | 14,8                        | 100          | 2           | 1,3            | 14,32                                | 0                          | 937,00<br>534,60 |
| Cauhyra I                     | SE/CO/AC/RO                | O. Comb. B               | 148                         | 100          | 2           | 4              | 139,24                               | 0                          | 324,21           |
| CHARQUEADAS                   | S                          | CARVAO                   | 72                          | 100          | 13,94       | 12,25          | 54,37                                | 24                         | 164,18           |
| Cisframa<br>CRATO             | S<br>NE                    | Cavaco Mad<br>DIESEL     | 4<br>13,1                   | 90<br>100    | 3,5<br>2    | 6<br>1,3       | 3,27<br>12,67                        | 0<br>0                     | 189,40<br>534,60 |
| CUBATAO_L                     | SE/CO/AC/RO                | GAS                      | 249,9                       | 59,3         | 2,26        | 2              | 141,94                               | 59,3                       | 204,06           |
| CUBATAO_TC                    | SE/CO/AC/RO                | GAS                      | 249,9                       | 21,8         | 2,8         | 3,4            | 51,15                                | 27,1                       | 222,22           |
| CUIABA G CC<br>DAIA           | SE/CO/AC/RO                | GAS<br>OLEO              | 480<br>44,3                 | 100<br>85    | 2<br>2,5    | 8,31<br>2,2    | 431,31<br>35,91                      | 12,02<br>0                 | 6,27<br>582,09   |
| DO ATLANTICO                  | SE/CO/AC/RO<br>SE/CO/AC/RO | GAS PROCES               | 490                         | 93           | 2,5<br>2    | 6              | 419,79                               | 419,78                     | 117,54           |
| ELETROBOL_L                   | SE/CO/AC/RO                | GAS                      | 312,8                       | 100          | 0,9         | 2,3            | 302,86                               | 0                          | 164,91           |
| ELETROBOL_TC                  | SE/CO/AC/RO                |                          | 73,1                        | 100          | 0,9         | 2,16           | 70,88                                | 0                          | 250,87           |
| ENGUIA PECEM<br>Escolha       | NE<br>SE/CO/AC/RO          | DIESEL<br>GNL            | 14,8<br>337,6               | 100<br>100   | 2<br>1,3    | 1,3<br>2,7     | 14,32<br>324,21                      | 0<br>0                     | 534,60<br>107,30 |
| FAFEN_TC                      | NE                         | GAS                      | 138                         | 100          | 2,81        | 6,48           | 125,43                               | 0                          | 188,15           |
| FIGUEIRA                      | S                          | CARVAO                   | 20                          | 87           | 8,4         | 12,25          | 13,99                                | 5                          | 315,22           |
| FORTALEZA<br>GERAMAR I        | NE<br>N/MAN                | GAS<br>OLEO COMB         | 346,6<br>165                | 98<br>96     | 1,94<br>1,3 | 1,91<br>2,7    | 326,72<br>152,12                     | 223<br>0                   | 86,52<br>362,38  |
| GERAMAR II                    | N/MAN                      | OLEO COMB                | 165                         | 96           | 1,3         | 2,7            | 152,12                               | 0                          | 362,38           |
| GLOBAL 1                      | NE                         | OLEO COMB                | 140                         | 100          | 2           | 2              | 134,46                               | 0                          | 361,51           |
| GLOBAL 2<br>Goiania 2 BR      | NE<br>SE/CO/AC/RO          | OLEO COMB<br>DIESEL      | 148<br>140                  | 100<br>97    | 2<br>3      | 4<br>2         | 139,24<br>129,09                     | 0<br>0                     | 361,51           |
| IBIRITERM_TC                  | SE/CO/AC/RO                | GAS                      | 226                         | 100          | 3,5         | 2,68           | 212,25                               | 0                          | 633,49<br>188,89 |
| Iconha                        | SE/CO/AC/RO                | O. Comb. B               | 184                         | 100          | 1,7         | 2,42           | 176,49                               | 0                          | 250,16           |
| IGARAPE                       | SE/CO/AC/RO                | OLEO                     | 131                         | 100          | 8,46        | 9,27           | 108,8                                | 2,23                       | 645,30           |
| IGUATU<br>ITAPEBI             | NE<br>NE                   | DIESEL<br>OLEO COMB      | 14,8<br>137,6               | 100<br>100   | 2<br>4      | 1,3<br>2       | 14,32<br>129,45                      | 0<br>0                     | 534,60<br>360,06 |
| J Alencar                     | NE                         | GNL                      | 300                         | 100          | 2           | 3              | 285,18                               | Ö                          | 103,76           |
| J.LACERDA A1                  | S                          | CARVAO                   | 100                         | 100          | 44,67       | 12,25          | 48,55                                | 0                          | 199,79           |
| J.LACERDA A2<br>J.LACERDA B   | S<br>S                     | CARVAO<br>CARVAO         | 132<br>262                  | 100<br>100   | 10,38<br>6  | 11,09<br>11,02 | 105,18<br>219,14                     | 33<br>120                  | 151,24<br>150,10 |
| J.LACERDA C                   | S                          | CARVAO                   | 363                         | 100          | 4,11        | 5,44           | 329,15                               | 300                        | 123,80           |
| JUAZEIRO                      | NE                         | DIESEL                   | 14,8                        | 100          | 2           | 1,3            | 14,32                                | 0                          | 534,60           |
| JUIZ DE FORA<br>LINHARES      | SE/CO/AC/RO<br>SE/CO/AC/RO | GAS<br>GNL               | 87,1<br>204                 | 100<br>100   | 2           | 8<br>3         | 78,53<br>193,92                      | 0<br>0                     | 150,00<br>126,53 |
| MACAE MER_L                   | SE/CO/AC/RO                | GAS                      | 275,5                       | 100          | 3,5         | 2              | 260,54                               | 0                          | 292,37           |
| MACAE MER_TC                  | SE/CO/AC/RO                | GAS                      | 653,3                       | 100          | 3,5         | 0,49           | 627,35                               | 0                          | 253,83           |
| MARACANAU II                  | NE                         | OLEO COMB                | 162,3                       | 97<br>07     | 3           | 2              | 149,65                               | 0                          | 349,64           |
| MARACANAU II<br>MARAMBAIA     | NE<br>NE                   | OLEO<br>DIESEL           | 70<br>13,1                  | 97<br>100    | 3<br>2      | 2<br>1,3       | 64,55<br>12,67                       | 0<br>0                     | 349,64<br>534,60 |
| MARANHAO III                  | N                          | GAS                      | 499,2                       | 100          | 1,85        | 1,62           | 482,03                               | 241,63                     | 52,00            |
| MAUA B3                       | N/MAN                      | GAS                      | 120                         | 80           | 2           | 7              | 87,49                                | 87,48                      | 451,68           |
| MC2 Camaca 1<br>MC2 Catu      | NE<br>NE                   | Oleo Combu<br>O. Comb. B | 176<br>176                  | 100<br>100   | 1<br>1      | 2<br>2         | 170,76<br>170,76                     | 0<br>0                     | 248,63<br>248,63 |
| MC2 D DAV 1                   | NE                         | Q. Comb. B               | 176                         | 100          | 1           | 2              | 170,76                               | 0                          | 248,63           |
| MC2 D DAV 2                   | NE                         | Óleo Combu               | 176                         | 100          | 1           | 2              | 170,76                               | 0                          | 248,63           |
| MC2 Feira                     | NE<br>NE                   | Oleo Combu               | 176<br>176                  | 100          | 1           | 2              | 170,76<br>170,76                     | 0<br>0                     | 249,27<br>248.07 |
| MC2 Gov Mang<br>MC2 Macaíba   | NE<br>NE                   | O. Comb. B<br>O. Comb. B | 176<br>400                  | 100<br>100   | 1<br>1      | 2<br>2         | 170,76<br>388,08                     | 0                          | 248,07<br>249,11 |
| MC2 Messias                   | NE                         | O. Comb. B               | 176                         | 100          | 1           | 2              | 170,76                               | 0                          | 251,19           |
| MC2 N S SOCO                  | NE<br>SE (SO (A S (BO      | O. Comb. B               | 176                         | 100          | 1           | 2              | 170,76                               | 0                          | 253,28           |
| MC2 N VENECI<br>MC2 PECEM 2   | SE/CO/AC/RO<br>NE          | O. Comb. B O. Comb. B    | 176<br>350                  | 100<br>100   | 1<br>1      | 2<br>2         | 170,76<br>339,57                     | 0<br>0                     | 248,07<br>245,35 |
| MC2 PECEM 2<br>MC2 RIO LARG   | NE                         | O. Comb. B               | 176                         | 100          | 1           | 2              | 170,76                               | 0                          | 251,19           |
| -                             |                            | -                        | -                           |              |             |                | ., -                                 | •                          | , -              |



|                              |                            |                          | Potência       | _            |             |             | Disponibilidade   | - 0                        |                  |
|------------------------------|----------------------------|--------------------------|----------------|--------------|-------------|-------------|-------------------|----------------------------|------------------|
| Usina                        | Subsistema                 | Combustível              | Efetiva        | Fcmax<br>(%) | TEIF<br>(%) | IP<br>(%)   | máxima            | Inflexibilidade<br>(Mwmed) | CVU<br>(R\$/MWh) |
| MC2 SAPEACU                  | NE                         | O. Comb. B               | (MW)<br>176    | 100          | 1           | 2           | (Mwmed)<br>170,76 | 0                          | 248,07           |
| MC2 SR BONFI                 | NE                         | Óleo Combu               | 176            | 100          | 1           | 2           | 170,76            | Ö                          | 248,63           |
| MC2 STO ANT                  | NE                         | O. Comb. B               | 176            | 100          | 1           | 2           | 170,76            | 0                          | 248,07           |
| MC2 SUAPE II                 | NE                         | O. Comb. B               | 350            | 100          | 1           | 2           | 339,57            | 0                          | 245,35           |
| MC2Camaçari2                 | NE                         | O. Comb. B               | 176            | 100          | 1           | 2           | 170,76            | 0                          | 248,07           |
| MC2Camaçari3                 | NE                         | O. Comb. B               | 176            | 100          | 1           | 2           | 170,76            | 0                          | 248,07           |
| MONTE PASCOAL                | NE                         | OLEO COMB                | 137,6          | 100          | 4           | 2           | 129,45            | 0                          | 352,68           |
| MPX João Neiva               | SE/CO/AC/RO                | GNL                      | 330            | 100          | 1           | 2           | 320,17            | 0                          | 78,80            |
| MPX Joinvile                 | SE/CO/AC/RO                | GNL                      | 330            | 100          | 1           | 2           | 320,17            | 0                          | 78,80            |
| NAZARIA<br>NORTEFLU-1        | NE<br>SE/CO/AC/RO          | DIESEL<br>Gas            | 13,1<br>400    | 100<br>100   | 2<br>0      | 1,3<br>0    | 12,67<br>400      | 0<br>383,99                | 534,60           |
| NORTEFLU-1                   | SE/CO/AC/RO                | Gas                      | 100            | 100          | 5,56        | 7,61        | 87,25             | 363,99<br>0                | 37,80<br>58,89   |
| NORTEFLU-3                   | SE/CO/AC/RO                | Gas                      | 200            | 100          | 5,56        | 7,61        | 174,51            | 0                          | 102,84           |
| NORTEFLU-4                   | SE/CO/AC/RO                | Gas                      | 168,9          | 100          | 5,56        | 7,61        | 147,37            | 0                          | 149,33           |
| NOVAPIRAT_TC                 | SE/CO/AC/RO                | GAS                      | 386,1          | 100          | 2,69        | 3,4         | 362,94            | 0                          | 182,56           |
| NUTEPA                       | S                          | OLEO                     | 24             | 83           | 1,8         | 0,1         | 19,54             | 0                          | 780,00           |
| P PECEM 2                    | NE                         | CARVAO IMP               | 360            | 100          | 1,5         | 3,5         | 342,19            | 0                          | 111,13           |
| P. PECEM 1                   | NE                         | CARVAO                   | 720,3          | 100          | 1,7         | 8,3         | 649,29            | 0                          | 105,11           |
| P.MEDICI A                   | S                          | CARVAO                   | 126            | 87,3         | 14          | 23          | 72,84             | 50                         | 115,90           |
| P.MEDICI B                   | S                          | CARVAO                   | 320            | 90           | 20          | 10          | 207,36            | 105                        | 115,90           |
| PALMEIRA GOI                 | SE/CO/AC/RO                | OLEO DIESE               | 174,3          | 80           | 2,5         | 2,2         | 132,96            | 0                          | 450,06           |
| Pau FerroI                   | NE                         | Oleo Diese               | 94             | 100          | 0           | 0           | 94                | 0                          | 679,70           |
| PERNAMBUCO 3                 | NE<br>NE                   | O. Comb. B<br>Óleo Combu | 200,8          | 100<br>100   | 1<br>1      | 2<br>2      | 194,82<br>194,82  | 0<br>0                     | 264,93           |
| Pernambuco 4<br>PETROLINA L  | NE<br>NE                   | OLEO COMBU               | 200,8<br>136   | 100          | 2,5         | 2<br>5,5    | 125,31            | 0                          | 276,54<br>561,62 |
| PIE C ROCHA                  | N/MAN                      | GAS                      | 85,4           | 100          | 0,01        | 0,01        | 85,38             | 64,98                      | 336,35           |
| PIE JARAQUI                  | N/MAN                      | GAS                      | 83,3           | 72           | 2           | 0           | 58,78             | 58,78                      | 165,81           |
| PIE MANAUARA                 | N/MAN                      | GAS                      | 85,4           | 70,3         | 2           | Ö           | 58,84             | 58,79                      | 174,46           |
| PIE P NEGRA                  | N/MAN                      | GAS                      | 85,4           | 70,3         | 2           | 0           | 58,84             | 58,79                      | 166,41           |
| PIE TAMBAQUI                 | N/MAN                      | GAS                      | 81,9           | 73,2         | 2           | 0           | 58,75             | 58,75                      | 165,81           |
| PIE-RP                       | SE/CO/AC/RO                | BIO+OUTROS               | 27,8           | 100          | 1,8         | 2           | 26,75             | 0                          | 160,05           |
| PIRAT.34V_TC                 | SE/CO/AC/RO                | VAPOR                    | 272            | 100          | 1,47        | 11,02       | 238,47            | 0                          | 182,56           |
| PORTO ITAQUI                 | N/MAN                      | CARVAO                   | 360,1          | 100          | 1,5         | 3,5         | 342,28            | 0                          | 106,53           |
| Potiguar                     | NE                         | Oleo Diese               | 52,8           | 100          | 2           | 2           | 50,71             | 0                          | 613,08           |
| Potiguar III                 | NE<br>SE/CO/AC/BO          | Oleo Diese               | 66<br>33       | 82,5         | 0           | 0           | 54,45             | 0                          | 613,07           |
| R.SILVEIRA G<br>S R CASSIA   | SE/CO/AC/RO<br>NE          | GAS<br>Óleo Combu        | 32<br>174,6    | 94<br>100    | 2,06<br>1   | 12,25<br>2  | 25,85<br>169,4    | 0<br>0                     | 523,35<br>276,54 |
| S.JERONIMO                   | S                          | CARVAO                   | 20             | 90           | 1,25        | 1,25        | 17,55             | 5                          | 248,31           |
| SANTANA W                    | N/MAN                      | DIESEL                   | 62,4           | 100          | 1,85        | 13,54       | 52,95             | 0                          | 494,14           |
| ST CRUZ NOVA 12              | SE/CO/AC/RO                | GAS                      | 500            | 100          | 2,2         | 6,3         | 458,19            | 0                          | 84,63            |
| ST.CRUZ 34                   | SE/CO/AC/RO                | OLEO                     | 440            | 90,9         | 9,18        | 5,44        | 343,48            | 0                          | 310,41           |
| SUAPE II                     | NE                         | OLEO                     | 355,7          | 100          | 1           | 2           | 345,1             | 0                          | 363,64           |
| T.NORTE 1                    | SE/CO/AC/RO                | OLEO                     | 64             | 100          | 4,86        | 4,77        | 57,99             | 0                          | 610,33           |
| TERMBAHIA_TC                 | NE                         | GAS                      | 185,9          | 100          | 1,5         | 4,22        | 175,38            | 0                          | 204,43           |
| TERMCEARA_L                  | NE                         | GAS                      | 152,8          | 100          | 1,2         | 0,6         | 150,06            | 0                          | 186,64           |
| TERMCEARA_TC                 | NE                         | GAS                      | 70,2           | 100          | 1,93        | 2,9         | 66,85             | 0                          | 492,29           |
| TERMOCABO                    | NE<br>NE                   | OLEO                     | 49,7           | 98<br>100    | 2<br>0      | 2<br>0      | 46,78             | 0<br>0                     | 358,06<br>670,70 |
| Termomanaus<br>TERMONORDESTE | NE<br>NE                   | Oleo Diese<br>OLEO COMB  | 142,2<br>170,8 | 95           | 3           | 1           | 142,2<br>155,82   | 0                          | 679,70<br>361,35 |
| TERMONORTE 2                 | SE/CO/AC/RO                | OLEO                     | 340            | 100          | 4,79        | 4,82        | 308,11            | 0                          | 487,56           |
| TERMOPARAIBA                 | NE                         | OLEO COMB                | 170,8          | 95           | 3           | 1           | 155,82            | Ö                          | 361,35           |
| TERMOPE                      | NE                         | GAS                      | 601,8          | 88,1         | 3           | 4,5         | 491,14            | 348,8                      | 70,16            |
| TERMOPOWER 5                 | NE                         | O. Comb. B               | 200,8          | 100          | 1           | 2           | 194,82            | 0                          | 264,93           |
| TERMOPOWER 6                 | NE                         | O. Comb. B               | 200,8          | 100          | 1           | 2           | 194,82            | 0                          | 264,93           |
| TERMORIO_L                   | SE/CO/AC/RO                | GAS                      | 739,3          | 100          | 1           | 2,7         | 712,15            | 71,71                      | 129,09           |
| TERMORIO_TC                  | SE/CO/AC/RO                | GAS                      | 296,8          | 100          | 1,34        | 1,72        | 287,79            | 28,79                      | 214,48           |
| TRES LAG_L                   | SE/CO/AC/RO                | GAS                      | 132,4          | 100          | 1,2         | 2,88        | 127,04            | 0                          | 106,78           |
| TRES LAG_T                   | SE/CO/AC/RO                | GAS                      | 217,6          | 100          | 1,15        | 3,45        | 207,68            | 0                          | 140,34           |
| UTE BRASILIA                 | SE/CO/AC/RO                | DIESEL 1                 | 10             | 80           | 19,45       | 0           | 6,44              | 0                          | 1047,38          |
| UTE SOL                      | SE/CO/AC/RO                | Residuos I               | 196,5          | 100          | 3,79        | 13,61       | 163,32            | 132,98                     | 0,01             |
| VALE ACU_TC                  | NE<br>SE/CO/AC/PO          | GAS<br>OLEO COMB         | 367,9          | 100          | 3<br>1 2    | 5,2<br>2.7  | 338,31            | 0<br>0                     | 287,83<br>362.38 |
| VIANA<br>W.ARJONA            | SE/CO/AC/RO<br>SE/CO/AC/RO | OLEO COMB<br>DIESEL      | 170,8<br>190   | 100<br>90    | 1,3<br>1,92 | 2,7<br>2,32 | 164,03<br>163,83  | 0                          | 362,38<br>197,85 |
| XAVANTE                      | SE/CO/AC/RO                | DIESEL                   | 53,7           | 100          | 3,5         | 8           | 47,67             | 0                          | 843,90           |
| 70 177 H T I E               | JE, CO, AC, NO             | -11-01-1                 | 33,1           | 100          | 2,3         |             | 1,70,             | <u> </u>                   | 0.0,00           |



# Apêndice 2 — Ficha de dados — Retificação do Cálculo de Garantia Física da UHE São Roque

Tabela 24 – Dados Energéticos – UHE São Roque

| Potência instalada (MW)                          | 135,00    |
|--------------------------------------------------|-----------|
| Hidrelétrica a jusante                           | Garibaldi |
| Tipo de turbina                                  | Francis   |
| Rendimento médio do conjunto turbina-gerador (%) | 91,5      |
| Produtibilidade Específica (MW/m³/s/m)           | 0,008976  |
| Taxa de indisponibilidade forçada - TEIF (%)     | 1,672     |
| Indisponibilidade programa - IP (%)              | 5,403     |
| Interligação no Subsistema                       | Sul       |
| Perda Hidráulica média (m)                       | 0,90      |
| Canal de fuga médio (m)                          | 706,43    |
| Influência do vertimento no canal de fuga? (S/N) | S         |
| Vazão remanescente (m³/s)                        | -         |
| Vazão mínima do histórico (m³/s)                 | 16        |
| Vazão mínima defluente (m³/s)                    | 16        |

### Conjunto de máquinas 1

| Número de unidades geradoras | 3      |
|------------------------------|--------|
| Potência unitária (MW)       | 45,000 |
| Vazão efetiva (m³/s)         | 103    |
| Queda líquida de referência  | 48,60  |

### **RESERVATÓRIO**

| Volume máximo (hm³)                 | 795,67 |
|-------------------------------------|--------|
| Volume mínimo (hm³)                 | 336,72 |
| NA máximo normal (m)                | 760,00 |
| NA mínimo normal (m)                | 746,00 |
| Área máxima (km²)                   | 45,77  |
| Área mínima (km²)                   | 21,66  |
| Regulação (Diária/ Semanal/ Mensal) | Mensal |

**EVAPORAÇÃO LÍQUIDA MÉDIA MENSAL (mm)** 

|     | 4   |     |     | , ·- (····· <i>)</i> |     |     |     |     |     |     |     |
|-----|-----|-----|-----|----------------------|-----|-----|-----|-----|-----|-----|-----|
| Jan | Fev | Mar | Abr | Mai                  | Jun | Jul | Ago | Set | Out | Nov | Dez |
| 4   | 23  | 40  | 53  | 59                   | 48  | 25  | 4   | -6  | -26 | -41 | -26 |

VAZÕES DE USOS CONSUNTIVOS (m³/s)

| 17 LE 0 E 0 E 0 | <del>555 55.</del> | 100:1:1 | . 00 ( / | <i>-</i> , |      |      |      |      |      |      |      |      |
|-----------------|--------------------|---------|----------|------------|------|------|------|------|------|------|------|------|
| Horizonte       | Jan                | Fev     | Mar      | Abr        | Mai  | Jun  | Jul  | Ago  | Set  | Out  | Nov  | Dez  |
| 2016            | 1,99               | 1,42    | 1,28     | 0,91       | 0,80 | 0,81 | 0,82 | 0,99 | 1,14 | 1,72 | 2,97 | 2,67 |

#### **POLINÔMIOS**

| FOLINOPILOS |              |               |               |               |               |
|-------------|--------------|---------------|---------------|---------------|---------------|
|             | A0           | A1            | A2            | A3            | A4            |
| PVC         | 7,179573E+02 | 1,382408E-01  | -2,265683E-04 | 2,165083E-07  | -8,376937E-11 |
| PCA         | 1,739588E+05 | -6,746445E+02 | 8,693143E-01  | -3,720000E-04 | 0,000000E+00  |
| PVNJ        | 7,055968E+02 | 3,699601E-03  | -3,028187E-06 | 1,426154E-09  | -2,228470E-13 |



## SÉRIE DE VAZÕES MÉDIAS MENSAIS

| SEKIE D | E VAZUE | S MEDIA | S MENSA. | 15  |     |      |      |      |     |     |             |      |
|---------|---------|---------|----------|-----|-----|------|------|------|-----|-----|-------------|------|
|         | Jan     | Fev     | Mar      | Abr | Mai | Jun  | Jul  | Ago  | Set | Out | Nov         | Dez  |
| 1931    | 136     | 37      | 53       | 57  | 422 | 349  | 349  | 167  | 487 | 147 | 88          | 92   |
| 1932    | 93      | 170     | 181      | 627 | 518 | 364  | 268  | 182  | 427 | 344 | 119         | 132  |
|         |         |         |          |     |     |      |      |      |     |     |             |      |
| 1933    | 45      | 64      | 49       | 38  | 59  | 77   | 78   | 166  | 215 | 456 | 166         | 51   |
| 1934    | 147     | 240     | 140      | 233 | 190 | 144  | 120  | 200  | 210 | 186 | 77          | 124  |
| 1935    | 68      | 41      | 53       | 33  | 24  | 115  | 303  | 382  | 455 | 707 | 154         | 336  |
| 1936    | 155     | 74      | 76       | 54  | 179 | 632  | 339  | 440  | 301 | 301 | 139         | 90   |
| 1937    | 81      | 78      | 187      | 133 | 62  | 48   | 95   | 199  | 237 | 252 | 207         | 105  |
| 1938    | 251     | 317     | 103      | 199 | 390 | 397  | 322  | 111  | 86  | 91  | 113         | 49   |
| 1939    | 84      | 109     | 237      | 145 | 354 | 265  | 170  | 115  | 315 | 162 | 396         | 463  |
|         |         |         |          |     |     |      |      |      |     |     |             |      |
| 1940    | 287     | 192     | 125      | 265 | 208 | 123  | 149  | 247  | 122 | 258 | 110         | 169  |
| 1941    | 151     | 292     | 275      | 249 | 416 | 368  | 259  | 530  | 265 | 275 | 374         | 219  |
| 1942    | 90      | 223     | 216      | 269 | 277 | 153  | 143  | 175  | 154 | 166 | 59          | 52   |
| 1943    | 36      | 75      | 40       | 33  | 137 | 425  | 305  | 465  | 354 | 205 | 112         | 67   |
| 1944    | 205     | 88      | 110      | 57  | 31  | 67   | 82   | 34   | 51  | 54  | 85          | 29   |
| 1945    | 16      | 71      | 41       | 26  | 22  | 31   | 49   | 48   | 119 | 91  | 46          | 63   |
| 1946    | 224     | 393     | 235      | 118 | 157 | 289  | 446  | 164  | 128 | 199 | 103         | 133  |
| 1947    | 115     | 170     | 127      | 49  | 90  | 161  | 136  | 173  | 382 | 253 | 117         | 103  |
|         |         |         |          |     |     |      |      |      |     |     |             |      |
| 1948    | 84      | 137     | 166      | 144 | 403 | 136  | 235  | 453  | 110 | 169 | 98          | 46   |
| 1949    | 45      | 35      | 106      | 114 | 102 | 203  | 119  | 184  | 215 | 202 | 78          | 50   |
| 1950    | 121     | 89      | 133      | 92  | 120 | 64   | 85   | 242  | 213 | 555 | 149         | 107  |
| 1951    | 216     | 355     | 286      | 100 | 59  | 44   | 80   | 28   | 32  | 451 | 295         | 156  |
| 1952    | 157     | 123     | 52       | 39  | 31  | 121  | 281  | 86   | 366 | 474 | 245         | 99   |
| 1953    | 123     | 231     | 133      | 71  | 63  | 63   | 82   | 75   | 241 | 376 | 427         | 157  |
| 1954    | 166     | 144     | 252      | 220 | 384 | 506  | 627  | 176  | 660 | 838 | 166         | 86   |
| 1955    |         |         |          |     |     |      |      |      |     |     |             |      |
|         | 76      | 117     | 120      | 233 | 304 | 306  | 665  | 256  | 198 | 121 | 120         | 163  |
| 1956    | 321     | 397     | 108      | 270 | 262 | 127  | 108  | 241  | 431 | 307 | 125         | 103  |
| 1957    | 98      | 173     | 163      | 144 | 155 | 114  | 440  | 1215 | 855 | 378 | 246         | 176  |
| 1958    | 127     | 138     | 457      | 122 | 94  | 274  | 113  | 245  | 462 | 378 | 332         | 236  |
| 1959    | 138     | 214     | 149      | 155 | 212 | 128  | 95   | 109  | 300 | 175 | 81          | 69   |
| 1960    | 81      | 161     | 147      | 122 | 89  | 141  | 97   | 333  | 217 | 259 | 312         | 150  |
| 1961    | 159     | 153     | 439      | 230 | 139 | 101  | 129  | 54   | 709 | 853 | 780         | 285  |
| 1962    | 125     | 108     | 115      | 69  | 246 | 159  | 192  | 110  | 344 | 211 | 137         | 81   |
|         |         |         |          |     |     |      |      |      |     |     |             |      |
| 1963    | 197     | 568     | 426      | 211 | 86  | 48   | 58   | 126  | 245 | 831 | 479         | 188  |
| 1964    | 82      | 138     | 105      | 134 | 171 | 100  | 111  | 197  | 268 | 275 | 131         | 99   |
| 1965    | 71      | 59      | 55       | 81  | 191 | 149  | 109  | 606  | 790 | 396 | 166         | 279  |
| 1966    | 342     | 635     | 434      | 198 | 114 | 296  | 226  | 215  | 505 | 338 | 266         | 295  |
| 1967    | 172     | 250     | 278      | 111 | 85  | 121  | 103  | 302  | 485 | 338 | 200         | 209  |
| 1968    | 66      | 48      | 49       | 50  | 39  | 39   | 71   | 33   | 138 | 90  | 277         | 178  |
| 1969    | 333     | 486     | 281      | 401 | 138 | 288  | 252  | 127  | 194 | 111 | 250         | 84   |
| 1970    | 141     | 105     | 100      | 83  | 142 | 318  | 321  | 160  | 252 | 211 | 81          | 170  |
|         |         |         |          |     |     |      |      |      |     |     |             |      |
| 1971    | 537     | 374     | 435      | 547 | 418 | 482  | 378  | 341  | 225 | 223 | 61          | 47   |
| 1972    | 82      | 380     | 198      | 130 | 63  | 264  | 242  | 719  | 779 | 425 | 248         | 212  |
| 1973    | 205     | 325     | 184      | 97  | 240 | 397  | 411  | 653  | 613 | 208 | 181         | 111  |
| 1974    | 164     | 214     | 257      | 137 | 68  | 201  | 151  | 90   | 242 | 88  | 160         | 83   |
| 1975    | 125     | 129     | 146      | 80  | 72  | 140  | 88   | 327  | 726 | 630 | 157         | 458  |
| 1976    | 306     | 114     | 243      | 91  | 251 | 372  | 194  | 461  | 226 | 176 | 181         | 478  |
| 1977    | 289     | 475     | 220      | 175 | 60  | 68   | 116  | 581  | 256 | 479 | 447         | 171  |
| 1978    | 150     | 129     | 120      | 43  | 33  | 33   | 83   | 70   | 193 | 115 | 164         | 112  |
| 1979    | 74      |         | 75       |     |     | 150  |      |      |     |     |             |      |
|         |         | 41      |          | 101 | 349 |      | 190  | 148  | 110 | 806 | 523         | 318  |
| 1980    | 128     | 85      | 339      | 121 | 131 | 89   | 246  | 649  | 579 | 269 | 271         | 511  |
| 1981    | 379     | 313     | 84       | 78  | 58  | 70   | 82   | 70   | 162 | 141 | 118         | 100  |
| 1982    | 66      | 216     | 149      | 75  | 64  | 217  | 419  | 245  | 120 | 345 | 905         | 297  |
| 1983    | 264     | 364     | 528      | 263 | 805 | 736  | 2525 | 1229 | 420 | 234 | 231         | 242  |
| 1984    | 185     | 158     | 177      | 135 | 165 | 545  | 459  | 1222 | 287 | 425 | 270         | 263  |
| 1985    | 86      | 304     | 156      | 170 | 115 | 62   | 91   | 83   | 156 | 97  | 164         | 38   |
| 1986    | 67      | 93      | 54       | 88  | 74  | 134  | 65   | 79   | 172 |     |             | 257  |
|         |         |         |          |     |     |      |      |      |     | 265 | 394         |      |
| 1987    | 339     | 164     | 80       | 138 | 666 | 282  | 223  | 224  | 185 | 551 | 135         | 66   |
| 1988    | 87      | 112     | 106      | 139 | 472 | 291  | 123  | 58   | 191 | 167 | 76          | 71   |
| 1989    | 234     | 373     | 147      | 159 | 417 | 77   | 103  | 122  | 730 | 263 | 93          | 60   |
| 1990    | 496     | 276     | 184      | 294 | 255 | 1113 | 383  | 297  | 494 | 796 | 653         | 197  |
| 1991    | 97      | 92      | 48       | 40  | 41  | 219  | 157  | 215  | 81  | 222 | 200         | 177  |
| 1992    | 136     | 233     | 260      | 154 | 580 | 742  | 762  | 574  | 343 | 179 | 217         | 141  |
| 1772    | 100     | 233     | 200      | 101 | 500 | / 14 | 702  | J/ I | 5   | 1/3 | <u>~</u> 1/ | T 11 |



|      | Jan | Fev | Mar | Abr | Mai | Jun | Jul | Ago | Set  | Out | Nov | Dez |
|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| 1993 | 158 | 297 | 248 | 129 | 212 | 249 | 596 | 129 | 393  | 574 | 163 | 276 |
| 1994 | 95  | 461 | 191 | 210 | 233 | 373 | 530 | 148 | 91   | 306 | 352 | 110 |
| 1995 | 608 | 336 | 158 | 73  | 39  | 114 | 159 | 101 | 197  | 395 | 141 | 108 |
| 1996 | 344 | 411 | 202 | 214 | 60  | 148 | 342 | 310 | 401  | 386 | 142 | 166 |
| 1997 | 236 | 721 | 264 | 63  | 55  | 158 | 370 | 437 | 189  | 998 | 958 | 258 |
| 1998 | 327 | 641 | 518 | 720 | 590 | 173 | 302 | 673 | 773  | 430 | 144 | 149 |
| 1999 | 142 | 204 | 125 | 240 | 95  | 200 | 597 | 122 | 113  | 355 | 135 | 95  |
| 2000 | 138 | 188 | 185 | 147 | 133 | 127 | 306 | 157 | 848  | 801 | 204 | 237 |
| 2001 | 437 | 640 | 304 | 288 | 353 | 255 | 314 | 171 | 252  | 856 | 161 | 256 |
| 2002 | 188 | 145 | 107 | 180 | 142 | 246 | 174 | 445 | 365  | 521 | 513 | 429 |
| 2003 | 120 | 149 | 219 | 85  | 85  | 151 | 97  | 50  | 55   | 122 | 139 | 421 |
| 2004 | 163 | 96  | 57  | 108 | 165 | 106 | 367 | 100 | 290  | 524 | 284 | 169 |
| 2005 | 182 | 84  | 75  | 149 | 515 | 409 | 217 | 183 | 1083 | 759 | 375 | 98  |
| 2006 | 97  | 87  | 75  | 54  | 40  | 39  | 43  | 146 | 121  | 112 | 211 | 199 |
| 2007 | 127 | 127 | 258 | 117 | 379 | 160 | 341 | 200 | 258  | 414 | 425 | 133 |
| 2008 | 171 | 162 | 129 | 146 | 224 | 193 | 173 | 133 | 276  | 664 | 625 | 160 |
| 2009 | 162 | 104 | 115 | 43  | 40  | 55  | 349 | 560 | 717  | 608 | 268 | 175 |



# Apêndice 3 — Configuração Hidrotérmica de Referência - Revisão Extraordinária de Garantia Física da UHE São Roque

Tabela 25 – Configuração Hidrelétrica

| Sudasta / Cantra Oast | o / Acro / Dondônia |              |               |
|-----------------------|---------------------|--------------|---------------|
| Sudeste / Centro-Oest |                     | TALIDII      | DETIDO DAIVO  |
| A. VERMELHA           | DARDANELOS          | JAURU        | RETIRO BAIXO  |
| A.A. LAYDNER          | E. DA CUNHA         | JIRAU        | RONDON 2      |
| A.S. LIMA             | EMBORCACAO          | JUPIA        | ROSAL         |
| A.S.OLIVEIRA          | ESPORA              | JURUENA      | ROSANA        |
| AIMORES               | ESTREITO            | L.N. GARCEZ  | SA CARVALHO   |
| B. COQUEIROS          | ESTRELA             | LAJEADO      | SALTO         |
| BAGUARI               | FONTES              | LAJES        | SALTO GRANDE  |
| Barra Bonita          | FOZ R. CLARO        | M. DE MORAES | SAMUEL        |
| Barra Brauna          | FUNIL               | MANSO        | SANTA BRANCA  |
| BATALHA               | FUNIL-GRANDE        | MARIMBONDO   | SAO DOMINGOS  |
| BILLINGS              | FURNAS              | MASCARENHAS  | SAO MANOEL    |
| CACH.DOURADA          | GUAPORE             | MIRANDA      | SAO SALVADOR  |
| CACONDE               | GUARAPIRANGA        | NAVANHANDAVA | SAO SIMAO     |
| CACU                  | GUILMAN-AMOR        | NILO PECANHA | SERRA FACAO   |
| CAMARGOS              | HENRY BORDEN        | NOVA PONTE   | SERRA MESA    |
| Cana Brava            | I. SOLTEIRA         | OURINHOS     | SIMPLICIO     |
| CANDONGA              | IBITINGA            | P. COLOMBIA  | SINOP         |
| CANOAS I              | IGARAPAVA           | P. ESTRELA   | SLT VERDINHO  |
| CANOAS II             | ILHA POMBOS         | P. PASSOS    | SOBRAGI       |
| CAPIM BRANC1          | IRAPE               | P. PRIMAVERA | STA CLARA MG  |
| CAPIM BRANC2          | ITAIPU              | PARAIBUNA    | STO ANTONIO   |
| CAPIVARA              | ITIQUIRA I          | PEIXE ANGIC  | SUICA         |
| CHAVANTES             | ITIQUIRA II         | PICADA       | TAQUARUCU     |
| COLIDER               | ITUMBIARA           | PIRAJU       | TELES PIRES   |
| CORUMBA I             | ITUTINGA            | PONTE PEDRA  | TRES IRMAOS   |
| CORUMBA III           | JAGUARA             | PROMISSAO    | TRES MARIAS   |
| CORUMBA IV            | JAGUARI             | QUEIMADO     | VOLTA GRANDE  |
| Sul                   | JAGOARI             | QUEITIADO    | VOLIA GIVANDE |
| 14 DE JULHO           | FUNDAO              | MAUA         | SALTO PILAO   |
| BAIXO IGUACU          | G.B. MUNHOZ         | MONJOLINHO   | SAO JOSE      |
| BARRA GRANDE          | G.P. SOUZA          | MONTE CLARO  | SAO ROQUE     |
| CAMPOS NOVOS          | GARIBALDI           | PASSO FUNDO  | SEGREDO       |
| CANASTRA              | ITA                 | PASSO REAL   | SLT.SANTIAGO  |
|                       |                     |              |               |
| CASTRO ALVES          | ITAUBA              | PASSO S JOAO | STA CLARA PR  |
| D. FRANCISCA          | JACUI               | QUEBRA QUEIX |               |
| ERNESTINA             | JORDAO              | SALTO CAXIAS |               |
| FOZ CHAPECO           | MACHADINHO          | SALTO OSORIO |               |
| Nordeste              | ITADADICA           | D. CAVALO    | VINCO         |
| B. ESPERANCA          | ITAPARICA           | P. CAVALO    | XINGO         |
| COMP PAF-MOX          | ITAPEBI             | SOBRADINHO   |               |
| Norte / Manaus / Belo |                     | ECTREITO TOO | TUCUDUT       |
| BALBINA               | CACH CALDEIR        | ESTREITO TOC | TUCURUI       |
| BELO MONTE            | COARA NUNES         | FERREIRA GOM |               |
| B.MONTE COMP          | CURUA-UNA           | STO ANT JARI |               |



Tabela 26 - Configuração Termelétrica

|                              |            |             | ibeia 20 -                  |              | a. a.ya     |           |                                      |                            |                  |
|------------------------------|------------|-------------|-----------------------------|--------------|-------------|-----------|--------------------------------------|----------------------------|------------------|
| Usina                        | Subsistema | Combustivel | Potência<br>Efetiva<br>(MW) | Fcmax<br>(%) | TEIF<br>(%) | IP<br>(%) | Disponibilidade<br>máxima<br>(Mwmed) | Inflexibilidade<br>(Mwmed) | CVU<br>(R\$/MWh) |
| ANGRA 1                      | SE         | NUCLEAR     | 640,0                       | 100          | 2,06        | 8,77      | 571,84                               | 509,8                      | 31,17            |
| ANGRA 2                      | SE         | NUCLEAR     | 1350,0                      | 100          | 2,36        | 13,87     | 1135,31                              | 1080                       | 20,12            |
| ANGRA 3                      | SE         | NUCLEAR     | 1405,0                      | 100          | 2           | 6,84      | 1282,72                              | 1282,7                     | 25,58            |
| APARECIDA                    | N          | GAS         | 166,0                       | 100          | 14,18       | 11,47     | 126,12                               | 126,12                     | 72,98            |
| APOENA                       | NE         | OLEO        | 147,2                       | 0            | 17,33       | 4,87      | 0,00                                 | 0                          | 1851,30          |
| ARAUCARIA                    | S          | GAS         | 484,2                       | 0            | 3,11        | 18,47     | 0,00                                 | 0                          | 0,00             |
| Azulao                       | N          | GAS         | 295,4                       | 100          | 3           | 3,07      | 277,74                               | 0                          | 558,22           |
| AZULAO II                    | N          | GAS         | 295,4                       | 100          | 3           | 3,07      | 277,74                               | 193,8                      | 150,00           |
| AZULAO IV                    | N          | GAS         | 295,4                       | 100          | 3           | 3,07      | 277,74                               | 193,8                      | 150,00           |
| BAIXADA FLU                  | SE         | GAS         | 530,0                       | 100          | 10,83       | 7,77      | 435,88                               | 0                          | 100,63           |
| BBF BALIZA                   | N          | BIOMASSA    | 17,9                        | 92,8         | 1,17        | 5,63      | 15,49                                | 6,66                       | 610,38           |
| BONFIM                       | N          | BIOMASSA    | 10,0                        | 100          | 2           | 2         | 9,60                                 | 4,08                       | 467,82           |
| C. ROCHA                     | N          | GAS         | 85,4                        | 0            | 1           | 20,72     | 0,00                                 | 0                          | 0,00             |
| CAMPINA GDE                  | NE         | OLEO        | 169,1                       | 0            | 42,36       | 10,12     | 0,00                                 | 0                          | 1173,72          |
| CANDIOTA 3                   | S          | CARVAO      | 350,0                       | 100          | 19,15       | 17,01     | 234,84                               | 210                        | 105,37           |
| CANOAS                       | S          | DIESEL      | 248,6                       | 100          | 4,47        | 16,69     | 197,85                               | 0                          | 1162,60          |
| CANTA                        | N          | BIOMASSA    | 10,0                        | 100          | 2           | 2         | 9,60                                 | 4,08                       | 467,82           |
| CIDADE LIVRO                 | SE         | BIOMASSA    | 80,0                        | 100          | 2,5         | 5         | 74,10                                | 0                          | 211,80           |
| Cisframa                     | S          | BIOMASSA    | 4,0                         | 90           | 29,32       | 7,27      | 2,36                                 | 0                          | 377,70           |
| CUBATAO                      | SE         | GAS         | 249,9                       | 86,4         | 8,65        | 11,35     | 174,85                               | 0                          | 179,86           |
| CUIABA G CC                  | SE         | GAS         | 529,2                       | 0            | 8,75        | 13,95     | 0,00                                 | 0                          | 0,00             |
| CURUMIM                      | NE         | OLEO        | 31,0                        | 0            | 20,53       | 2,14      | 0,00                                 | 0                          | 1260,09          |
| DAIA                         | SE         | DIESEL      | 44,4                        | 0            | 2,99        | 12,95     | 0,00                                 | 0                          | 0,00             |
| DO ATLANTICO                 | SE         | GAS PROCES  | 490,0                       | 93           | 0,66        | 3,84      | 435,31                               | 419,78                     | 235,02           |
| ERB CANDEIAS                 | NE         | BIOMASSA    | 16,8                        | 76,8         | 15,36       | 11,23     | 9,69                                 | 0                          | 60,00            |
| Fict_N                       | N          | GAS         | 10,0                        | 0            | 0           | 0         | 0,00                                 | 0                          | 0,00             |
| Fict_S                       | S          | GAS         | 10,0                        | 0            | 0           | 0         | 0,00                                 | 0                          | 0,00             |
| FIGUEIRA                     | S          | CARVAO      | 20,0                        | 90           | 4,37        | 6,06      | 16,17                                | 16,17                      | 330,64           |
| FORTALEZA                    | NE         | GAS         | 326,6                       | 100          | 2,17        | 0,8       | 316,96                               | 223                        | 277,36           |
| GERAMAR I                    | N          | OLEO        | 165,9                       | 96           | 0,3         | 0,48      | 158,02                               | 0                          | 1173,68          |
| GERAMAR II                   | N          | OLEO        | 165,9                       | 96           | 0,44        | 0,44      | 157,87                               | 0                          | 1173,68          |
| GLOBAL I                     | NE         | OLEO        | 148,8                       | 0            | 10,62       | 1,06      | 0,00                                 | 0                          | 1329,51          |
| GLOBAL II                    | NE         | OLEO        | 148,8                       | 0            | 13,83       | 1,08      | 0,00                                 | 0                          | 1329,51          |
| GNA I                        | SE         | GAS         | 1338,0                      | 100          | 5,34        | 2         | 1241,22                              | 0                          | 238,20           |
| GNA P. ACU 3                 | SE         | GAS         | 1673,0                      | 100          | 2,5         | 2         | 1598,55                              | 639,27                     | 170,94           |
| GOIANIA II                   | SE         | DIESEL      | 140,3                       | 0            | 39,96       | 10,86     | 0,00                                 | 0                          | 2700,59          |
| GUARANI                      | NE         | OLEO        | 150,0                       | 0            | 38,41       | 1,56      | 0,00                                 | 0                          | 1851,30          |
| HF S JOAQUIM                 | N          | BIOMASSA    | 57,0                        | 100          | 1,5         | 4,17      | 53,80                                | 25,71                      | 758,41           |
| IBIRITE                      | SE         | GAS         | 235,0                       | 100          | 4,7         | 5,8       | 210,97                               | 0                          | 603,99           |
| J.LACERDA A1                 | S          | CARVAO      | 100,0                       | 80           | 14,82       | 26,59     | 50,02                                | 0                          | 434,59           |
| J.LACERDA A1<br>J.LACERDA A2 | S<br>S     | CARVAO      | 132,0                       | 83,3         | 14,62       | 19,25     | 79,02                                | 33                         | 434,39<br>372,62 |
| J.LACERDA B                  | S          |             |                             | 84           | 9,34        | 15,4      | 168,80                               | 120                        | 362,67           |
| J.LACERDA C                  | S          | CARVAO      | 262,0<br>363,0              | 90,9         | 7,09        | 15,41     | 259,33                               | 259,32                     | 311,53           |
| JAGUATIRI II                 | 5<br>N     | GAS         | 363,0<br>140,8              | 100          | 2,5         | 1,5       | 259,55<br>135,22                     | 259,32<br>91,96            |                  |
|                              | N<br>N     | GAS         | 75,5                        | 0            | 2,5<br>4    | 1,5<br>0  | 0,00                                 | 91,96                      | 219,65<br>0,00   |
| JARAQUI<br>JUIZ DE FORA      | SE         | GAS         | 75,5<br>87,1                | 99,9         | 6,84        | 3,56      |                                      | 0                          | 1015,17          |
|                              |            |             |                             |              |             |           | 78,18                                |                            |                  |
| LINHARES LRC                 | SE         | GAS         | 204,0                       | 100          | 2,19        | 1,84      | 195,86 0                             |                            | 600,00           |
| M.CRISTO SUC                 | N          | DIESEL      | 42,3                        | 96,5         | 2           | 1         | 39,60<br>71,30                       | 0                          | 1008,36          |
| MANAUARA                     | N          | GAS         | 73,4                        | 100          | 2,5         | 0,39      | 71,29                                | 64,87                      | 0,00             |



| Usina        | Subsistema | Combustível | Potência<br>Efetiva<br>(MW) | Fcmax<br>(%) | TEIF<br>(%)  | IP<br>(%) | Disponibilidade<br>máxima<br>(Mwmed) | Inflexibilidade<br>(Mwmed) | CVU<br>(R\$/MWh) |
|--------------|------------|-------------|-----------------------------|--------------|--------------|-----------|--------------------------------------|----------------------------|------------------|
| MANAUS I     | N          | GAS         | 162,9                       | 100          | 2,5          | 2         | 155,65                               | 108,61                     | 97,89            |
| MARACANAU I  | NE         | OLEO        | 168,0                       | 0            | 33,92        | 14,24     | 0,00                                 | 0                          | 1142,86          |
| MARANHAO III | N          | GAS         | 518,8                       | 100          | 4,1          | 2,75      | 483,85                               | 241,63                     | 101,00           |
| MARANHAO IV  | N          | GAS         | 337,6                       | 100          | 1,49         | 1,37      | 328,01                               | 0                          | 351,54           |
| MARANHAO V   | N          | GAS         | 337,6                       | 100          | 1,37         | 1,63      | 327,55                               | 0                          | 351,54           |
| Marlim Azul  | SE         | GAS         | 565,5                       | 100          | 5            | 5         | 510,36                               | 210,42                     | 85,01            |
| MAUA 3       | N          | GAS         | 590,8                       | 98,7         | 9,29         | 9,4       | 479,23                               | 264                        | 72,98            |
| N.PIRATINING | SE         | GAS         | 479,3                       | 78,2         | 5,25         | 17,89     | 291,60                               | 0                          | 593,41           |
| N.VENECIA 2  | N          | GAS         | 270,5                       | 100          | 6,05         | 6,44      | 237,77                               | 40,44                      | 268,26           |
| NORTEFLU-1   | SE         | GAS         | 400,0                       | 100          | 0            | 0         | 400,00                               | 399,99                     | 106,76           |
| NORTEFLU-2   | SE         | GAS         | 100,0                       | 100          | 4,78         | 8,91      | 86,74                                | 0                          | 123,77           |
| NORTEFLU-3   | SE         | GAS         | 200,0                       | 100          | 4,78         | 8,91      | 173,47                               | 0                          | 237,75           |
| NORTEFLU-4   | SE         | GAS         | 126,8                       | 100          | 4,78         | 8,91      | 109,98                               | 0                          | 680,55           |
| NT BARCARENA | N N        | GAS         | 604,5                       | 100          | 1,1          | 2,05      | 585,59                               | 290,42                     | 154,47           |
| O. CANOAS 1  | N          | GAS         | 5,5                         | 90           | 2            | 6,5       | 4,54                                 | 2,25                       | 285,02           |
|              |            |             |                             |              |              |           |                                      | •                          |                  |
| Onca Pintada | SE         | BIOMASSA    | 50,0                        | 95           | 2,84         | 4,49      | 44,08                                | 6,86                       | 94,43            |
| P. PECEM I   | NE         | CARVAO      | 720,3                       | 100          | 3,6          | 6,91      | 646,39                               | 0                          | 800,40           |
| P. PECEM II  | NE         | CARVAO      | 365,0                       | 100          | 1,43         | 5,3       | 340,71                               | 0                          | 781,36           |
| P. SERGIPE I | NE         | GAS         | 1593,0                      | 100          | 12,92        | 2,06      | 1358,61                              | 0                          | 214,16           |
| PALMAPLAN 2  | N          | BIOMASSA    | 11,6                        | 100          | 0,91         | 1,36      | 11,34                                | 0                          | 636,95           |
| PALMEIRAS GO | SE         | DIESEL      | 175,6                       | 0            | 59,55        | 16,86     | 0,00                                 | 0                          | 2251,43          |
| PAMPA SUL    | S          | CARVAO      | 345,0                       | 100          | 25,27        | 11,13     | 229,12                               | 170                        | 56,39            |
| PARNAIBA IV  | N          | GAS         | 56,3                        | 96           | 5,5          | 4,3       | 48,88                                | 0                          | 550,06           |
| PARNAIBA V   | N          | GAS         | 385,7                       | 94,7         | 2,95         | 1,95      | 347,57                               | 0                          | 104,85           |
| Pau Ferro I  | NE         | DIESEL      | 94,1                        | 100          | 10,82        | 9,13      | 76,26                                | 0                          | 3373,78          |
| PAU RAINHA   | N          | BIOMASSA    | 10,0                        | 100          | 2            | 2         | 9,60                                 | 4,08                       | 467,82           |
| PERNAMBU_III | NE         | OLEO        | 200,8                       | 100          | 51,34        | 17,57     | 80,54                                | 0                          | 1013,94          |
| PETROLINA    | NE         | OLEO        | 136,2                       | 96,9         | 4,93         | 3,15      | 121,52                               | 0                          | 2031,13          |
| PIRAT.12 G   | SE         | GAS         | 200,0                       | 0            | 6,57         | 12,08     | 0,00                                 | 0                          | 470,34           |
| PONTA NEGRA  | N          | GAS         | 73,4                        | 89,9         | 2,5          | 0,53      | 64,00                                | 64                         | 0,00             |
| PORTO ITAQUI | N          | CARVAO      | 360,1                       | 100          | 2,7          | 5,27      | 331,91                               | 0                          | 771,76           |
| PORTOCEM I   | NE         | GAS         | 1572,0                      | 100          | 1,5          | 2,18      | 1514,66                              | 0                          | 490,87           |
| Potiguar     | NE         | DIESEL      | 53,1                        | 0            | 3,9          | 14,83     | 0,00                                 | 0                          | 3021,94          |
| Potiguar III | NE         | DIESEL      | 66,4                        | 0            | 3,89         | 20,27     | 0,00                                 | 0                          | 3021,90          |
| Predilecta   | SE         | BIOMASSA    | 5,0                         | 0            | 0,87         | 5,31      | 0,00                                 | 0                          | 0,00             |
| PROSPERI III | NE         | GAS         | 56,0                        | 100          | 0,5          | 4,5       | 53,21                                | 0                          | 129,45           |
| PROSPERID II | NE         | GAS         | 37,4                        | 100          | 2            | 4,21      | 35,11                                | 0                          | 138,53           |
| PROSPERIDADE | NE         | GAS         | 28,0                        | 100          | 3,67         | 1,81      | 26,48                                | 0                          | 195,14           |
| SANTA LUZ    | N          | BIOMASSA    | 10,0                        | 100          | 2            | 2         | 9,60                                 | 4,08                       | 467,82           |
| SAO SEPE     | S          | BIOMASSA    | 8,0                         | 90           | 13,1         | 2,44      | 6,10                                 | 0                          | 83,75            |
| SEROPEDICA   | SE         | GAS         | 360,0                       | 100          | 15,42        | ,<br>5,97 | 286,31                               | 0                          | 513,89           |
| ST.CRUZ 34   | SE         | OLEO        | 436,0                       | 0            | 24,25        | 18,01     | 0,00                                 | 0                          | 310,41           |
| ST.CRUZ NOVA | SE         | GAS         | 500,0                       | 100          | 6,22         | 7,99      | 431,43                               | 0                          | 384,21           |
| STA VITORIA  | SE         | BIOMASSA    | 41,4                        | 93           | 3,93         | 13,64     | 31,94                                | 0                          | 90,00            |
| SUAPE II     | NE         | OLEO        | 381,3                       | 100          | 3,93<br>7,77 | 10,05     | 316,33                               | 0                          | 1203,01          |
| SYKUE I      | NE         | BIOMASSA    | 30,0                        | 0            | 1,5          | 3         | 0,00                                 | 0                          | 510,12           |
| T.NORTE 2    | SE         | OLEO        | 349,0                       | 0            | 0,24         | ء<br>1,4  | 0,00                                 | 0                          | 910,86           |
| TAMBAQUI     | N N        | GAS         | 93,0                        | 0            | 4            | 0         | 0,00                                 | 0                          | 0,00             |
|              |            |             |                             |              |              |           |                                      |                            |                  |
| TERMOGARO    | NE<br>NE   | GAS         | 185,9                       | 85,5         | 2,56         | 9,97      | 139,43                               | 0                          | 374,87           |
| TERMOCABO    | NE         | OLEO        | 49,7                        | 100          | 1,12         | 6,06      | 46,17                                | 0                          | 1159,25          |



| Usina       | Subsistema | Combustível | Potência<br>Efetiva<br>(MW) | Fcmax<br>(%) | TEIF<br>(%) | IP<br>(%) | Disponibilidade<br>máxima<br>(Mwmed) | Inflexibilidade<br>(Mwmed) | CVU<br>(R\$/MWh) |
|-------------|------------|-------------|-----------------------------|--------------|-------------|-----------|--------------------------------------|----------------------------|------------------|
| TERMOCEARA  | NE         | GAS         | 223,0                       | 98,7         | 22,9        | 6,71      | 158,31                               | 0                          | 565,24           |
| TERMOMACAE  | SE         | GAS         | 922,6                       | 100          | 9,3         | 3,4       | 808,35                               | 0                          | 604,67           |
| Termomanaus | NE         | DIESEL      | 143,0                       | 100          | 13          | 11,05     | 110,66                               | 0                          | 3373,78          |
| TERMONE     | NE         | OLEO        | 170,9                       | 95           | 1,98        | 0,78      | 157,90                               | 0                          | 1162,73          |
| TERMOPB     | NE         | OLEO        | 170,9                       | 95           | 2,69        | 0,86      | 156,63                               | 0                          | 1162,73          |
| TERMOPE     | NE         | GAS         | 550,0                       | 100          | 1,37        | 6,08      | 509,48                               | 0                          | 599,12           |
| TERMORIO    | SE         | GAS         | 1058,0                      | 93,5         | 6           | 5,2       | 881,52                               | 0                          | 603,34           |
| TRES LAGOAS | SE         | GAS         | 350,0                       | 100          | 13,86       | 6,48      | 281,95                               | 0                          | 320,14           |
| TROMBUDO    | S          | GAS         | 28,0                        | 100          | 3           | 6         | 25,53                                | 0                          | 601,40           |
| URUGUAIANA  | S          | GAS         | 639,9                       | 0            | 0,14        | 56,17     | 0,00                                 | 0                          | 0,00             |
| VALE DO ACU | NE         | GAS         | 367,9                       | 84,3         | 6,01        | 18,93     | 236,32                               | 0                          | 450,86           |
| VIANA       | SE         | OLEO        | 174,6                       | 100          | 0,95        | 0,48      | 172,11                               | 0                          | 1173,70          |
| W. ARJONA   | SE         | GAS         | 177,1                       | 90           | 2,5         | 3,49      | 149,98                               | 0                          | 603,83           |
| XAVANTES    | SE         | DIESEL      | 53,6                        | 100          | 0,31        | 0,35      | 53,25                                | 0                          | 3679,07          |



# Apêndice 4 — Ficha de dados — Retificação da Revisão Extraordinária de Garantia Física da UHE São Roque

|                                                  | CRA0      | CRA1                          |
|--------------------------------------------------|-----------|-------------------------------|
| Potência instalada (MW)                          | 135,000   | 141,900                       |
| Hidrelétrica a jusante                           | Garibaldi | Garibaldi                     |
| Tipo de turbina                                  | Francis   | Francis                       |
| Rendimento médio do conjunto turbina-gerador (%) | 91,50     | 90,50                         |
| Produtibilidade Específica (MW/m³/s/m)           | 0,008976  | <b>0,008813</b> <sup>13</sup> |
| Aceleração da gravidade (m/s²)                   | 9,81      | 9,77907                       |
| Massa específica da água (kg/m³)                 | 1000      | 995,798                       |
| Taxa de indisponibilidade forçada - TEIF (%)     | 1,982     | 1,982                         |
| Indisponibilidade programa - IP (%)              | 5,292     | 5,292                         |
| Interligação no Subsistema                       | Sul       | Sul                           |
| Perda Hidráulica média (m)                       | 0,90      | 0,60                          |
| Canal de fuga médio (m)                          | 706,44    | 706,77                        |
| Influência do vertimento no canal de fuga? (S/N) | S         | S                             |
| Vazão remanescente (m³/s)                        | -         | -                             |
| Vazão mínima do histórico (m³/s)                 | 16        | 16                            |
| Vazão mínima defluente (m³/s)                    | 16        | 16                            |

| Conjunto de máquinas 1       |   | CRA0  | CRA1   |
|------------------------------|---|-------|--------|
| Número de unidades geradoras |   | 3     | 3      |
| Potência unitária (MW)       | 4 | 5,000 | 47,300 |
| Vazão efetiva (m³/s)         |   | 103   | 110    |
| Queda líquida de referência  |   | 48,60 | 48,60  |

| RESERVATÓRIO                        | CRA0   | CRA1   |
|-------------------------------------|--------|--------|
| Volume máximo (hm³)                 | 795,67 | 795,67 |
| Volume mínimo (hm³)                 | 336,72 | 336,72 |
| NA máximo normal (m)                | 760,00 | 760,00 |
| NA mínimo normal (m)                | 746,00 | 746,00 |
| Área máxima (km²)                   | 45,77  | 45,77  |
| Área mínima (km²)                   | 21,66  | 21,66  |
| Regulação (Diária/ Semanal/ Mensal) | Mensal | Mensal |

**EVAPORAÇÃO LÍQUIDA MÉDIA MENSAL (mm)** 

| Jan | Fev | Mar | Abr | Mai | Jun | Jul | Ago | Set | Out | Nov | Dez |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 4   | 23  | 40  | 53  | 59  | 48  | 25  | 4   | -6  | -26 | -41 | -26 |

VAZÕES DE USOS CONSUNTIVOS (m³/s)

|           |      |      |      | · , - , |      |      |      |      |      |      |      |      |
|-----------|------|------|------|---------|------|------|------|------|------|------|------|------|
| Horizonte | Jan  | Fev  | Mar  | Abr     | Mai  | Jun  | Jul  | Ago  | Set  | Out  | Nov  | Dez  |
| 2021      | 1,58 | 1,10 | 0,99 | 0,69    | 0,60 | 0,61 | 0,62 | 0,76 | 0,87 | 1,35 | 2,37 | 2,13 |

-

 $<sup>^{13}</sup>$  Foi utilizado como fator de conversão a aceleração da gravidade e a massa específica do local, de 9,77907 m/s2 e 995,798 kg/m3, respectivamente.



### **POLINÔMIOS**

|             | A0           | A1            | A2            | A3            | A4            |
|-------------|--------------|---------------|---------------|---------------|---------------|
| PVC         | 7,179573E+02 | 1,382408E-01  | -2,265683E-04 | 2,165083E-07  | -8,376937E-11 |
| PCA         | 1,739588E+05 | -6,746445E+02 | 8,693143E-01  | -3,720000E-04 | 0,000000E+00  |
| PVNJ – CRAO | 7,055968E+02 | 3,699601E-03  | -3,028187E-06 | 1,426154E-09  | -2,228470E-13 |
| PVNJ – CRA1 | 7,058049E+02 | 4,226171E-03  | -3,508414E-06 | 1,631973E-09  | -2,713518E-13 |

## SÉRIE DE VAZÕES MÉDIAS MENSAIS

|      |     |     | S MENSA |     |     |     |      |      |     |     |     |     |
|------|-----|-----|---------|-----|-----|-----|------|------|-----|-----|-----|-----|
|      | Jan | Fev | Mar     | Abr | Mai | Jun | Jul  | Ago  | Set | Out | Nov | Dez |
| 1931 | 136 | 37  | 53      | 57  | 422 | 349 | 349  | 167  | 487 | 147 | 88  | 92  |
| 1932 | 93  | 170 | 181     | 627 | 518 | 364 | 268  | 182  | 427 | 344 | 119 | 132 |
| 1933 | 45  | 64  | 49      | 38  | 59  | 77  | 78   | 166  | 215 | 456 | 166 | 51  |
| 1934 | 147 | 240 | 140     | 233 | 190 | 144 | 120  | 200  | 210 | 186 | 77  | 124 |
| 1935 | 68  | 41  | 53      | 33  | 24  | 115 | 303  | 382  | 455 | 707 | 154 | 336 |
| 1936 | 155 | 74  | 76      | 54  | 179 | 632 | 339  | 440  | 301 | 301 | 139 | 90  |
| 1937 | 81  | 78  | 187     | 133 | 62  | 48  | 95   | 199  | 237 | 252 | 207 | 105 |
| 1938 | 251 | 317 | 103     | 199 | 390 | 397 | 322  | 111  | 86  | 91  | 113 | 49  |
| 1939 | 84  | 109 | 237     | 145 | 354 | 265 | 170  | 115  | 315 | 162 | 396 | 463 |
| 1940 | 287 | 192 | 125     | 265 | 208 | 123 | 149  | 247  | 122 | 258 | 110 | 169 |
| 1941 | 151 | 292 | 275     | 249 | 416 | 368 | 259  | 530  | 265 | 275 | 374 | 219 |
| 1942 | 90  | 223 | 216     | 269 | 277 | 153 | 143  | 175  | 154 | 166 | 59  | 52  |
| 1943 | 36  | 75  | 40      | 33  | 137 | 425 | 305  | 465  | 354 | 205 | 112 | 67  |
| 1944 | 205 | 88  | 110     | 57  | 31  | 67  | 82   | 34   | 51  | 54  | 85  | 29  |
| 1945 | 16  | 71  | 41      | 26  | 22  | 31  | 49   | 48   | 119 | 91  | 46  | 63  |
| 1946 | 224 | 393 | 235     | 118 | 157 | 289 | 446  | 164  | 128 | 199 | 103 | 133 |
| 1947 | 115 | 170 | 127     | 49  | 90  | 161 | 136  | 173  | 382 | 253 | 117 | 103 |
| 1948 | 84  | 137 | 166     | 144 | 403 | 136 | 235  | 453  | 110 | 169 | 98  | 46  |
| 1949 | 45  | 35  | 106     | 114 | 102 | 203 | 119  | 184  | 215 | 202 | 78  | 50  |
| 1950 | 121 | 89  | 133     | 92  | 120 | 64  | 85   | 242  | 213 | 555 | 149 | 107 |
| 1951 | 216 | 355 | 286     | 100 | 59  | 44  | 80   | 28   | 32  | 451 | 295 | 156 |
| 1952 | 157 | 123 | 52      | 39  | 31  | 121 | 281  | 86   | 366 | 474 | 245 | 99  |
| 1953 | 123 | 231 | 133     | 71  | 63  | 63  | 82   | 75   | 241 | 376 | 427 | 157 |
| 1954 | 166 | 144 | 252     | 220 | 384 | 506 | 627  | 176  | 660 | 838 | 166 | 86  |
| 1955 | 76  | 117 | 120     | 233 | 304 | 306 | 665  | 256  | 198 | 121 | 120 | 163 |
| 1956 | 321 | 397 | 108     | 270 | 262 | 127 | 108  | 241  | 431 | 307 | 125 | 103 |
| 1957 | 98  | 173 | 163     | 144 | 155 | 114 | 440  | 1215 | 855 | 378 | 246 | 176 |
| 1958 | 127 | 138 | 457     | 122 | 94  | 274 | 113  | 245  | 462 | 378 | 332 | 236 |
| 1959 | 138 | 214 | 149     | 155 | 212 | 128 | 95   | 109  | 300 | 175 | 81  | 69  |
| 1960 | 81  | 161 | 147     | 122 | 89  | 141 | 97   | 333  | 217 | 259 | 312 | 150 |
| 1961 | 159 | 153 | 439     | 230 | 139 | 101 | 129  | 54   | 709 | 853 | 780 | 285 |
| 1962 | 125 | 108 | 115     | 69  | 246 | 159 | 192  | 110  | 344 | 211 | 137 | 81  |
| 1963 | 197 | 568 | 426     | 211 | 86  | 48  | 58   | 126  | 245 | 831 | 479 | 188 |
| 1964 | 82  | 138 | 105     | 134 | 171 | 100 | 111  | 197  | 268 | 275 | 131 | 99  |
| 1965 | 71  | 59  | 55      | 81  | 191 | 149 | 109  | 606  | 790 | 396 | 166 | 279 |
| 1966 | 342 | 635 | 434     | 198 | 114 | 296 | 226  | 215  | 505 | 338 | 266 | 295 |
| 1967 | 172 | 250 | 278     | 111 | 85  | 121 | 103  | 302  | 485 | 338 | 200 | 209 |
| 1968 | 66  | 48  | 49      | 50  | 39  | 39  | 71   | 33   | 138 | 90  | 277 | 178 |
| 1969 | 333 | 486 | 281     | 401 | 138 | 288 | 252  | 127  | 194 | 111 | 250 | 84  |
| 1970 | 141 | 105 | 100     | 83  | 142 | 318 | 321  | 160  | 252 | 211 | 81  | 170 |
| 1971 | 537 | 374 | 435     | 547 | 418 | 482 | 378  | 341  | 225 | 223 | 61  | 47  |
| 1972 | 82  | 380 | 198     | 130 | 63  | 264 | 242  | 719  | 779 | 425 | 248 | 212 |
| 1973 | 205 | 325 | 184     | 97  | 240 | 397 | 411  | 653  | 613 | 208 | 181 | 111 |
| 1974 | 164 | 214 | 257     | 137 | 68  | 201 | 151  | 90   | 242 | 88  | 160 | 83  |
| 1975 | 125 | 129 | 146     | 80  | 72  | 140 | 88   | 327  | 726 | 630 | 157 | 458 |
| 1976 | 306 | 114 | 243     | 91  | 251 | 372 | 194  | 461  | 226 | 176 | 181 | 478 |
| 1977 | 289 | 475 | 220     | 175 | 60  | 68  | 116  | 581  | 256 | 479 | 447 | 171 |
| 1978 | 150 | 129 | 120     | 43  | 33  | 33  | 83   | 70   | 193 | 115 | 164 | 112 |
| 1979 | 74  | 41  | 75      | 101 | 349 | 150 | 190  | 148  | 110 | 806 | 523 | 318 |
| 1980 | 128 | 85  | 339     | 121 | 131 | 89  | 246  | 649  | 579 | 269 | 271 | 511 |
| 1981 | 379 | 313 | 84      | 78  | 58  | 70  | 82   | 70   | 162 | 141 | 118 | 100 |
| 1982 | 66  | 216 | 149     | 75  | 64  | 217 | 419  | 245  | 120 | 345 | 905 | 297 |
| 1983 | 264 | 364 | 528     | 263 | 805 | 736 | 2525 | 1229 | 420 | 234 | 231 | 242 |



|      | Jan | Fev | Mar | Abr | Mai | Jun  | Jul | Ago  | Set  | Out | Nov | Dez |
|------|-----|-----|-----|-----|-----|------|-----|------|------|-----|-----|-----|
| 1984 | 185 | 158 | 177 | 135 | 165 | 545  | 459 | 1222 | 287  | 425 | 270 | 263 |
| 1985 | 86  | 304 | 156 | 170 | 115 | 62   | 91  | 83   | 156  | 97  | 164 | 38  |
| 1986 | 67  | 93  | 54  | 88  | 74  | 134  | 65  | 79   | 172  | 265 | 394 | 257 |
| 1987 | 339 | 164 | 80  | 138 | 666 | 282  | 223 | 224  | 185  | 551 | 135 | 66  |
| 1988 | 87  | 112 | 106 | 139 | 472 | 291  | 123 | 58   | 191  | 167 | 76  | 71  |
| 1989 | 234 | 373 | 147 | 159 | 417 | 77   | 103 | 122  | 730  | 263 | 93  | 60  |
| 1990 | 496 | 276 | 184 | 294 | 255 | 1113 | 383 | 297  | 494  | 796 | 653 | 197 |
| 1991 | 97  | 92  | 48  | 40  | 41  | 219  | 157 | 215  | 81   | 222 | 200 | 177 |
| 1992 | 136 | 233 | 260 | 154 | 580 | 742  | 762 | 574  | 343  | 179 | 217 | 141 |
| 1993 | 158 | 297 | 248 | 129 | 212 | 249  | 596 | 129  | 393  | 574 | 163 | 276 |
| 1994 | 95  | 461 | 191 | 210 | 233 | 373  | 530 | 148  | 91   | 306 | 352 | 110 |
| 1995 | 608 | 336 | 158 | 73  | 39  | 114  | 159 | 101  | 197  | 395 | 141 | 108 |
| 1996 | 344 | 411 | 202 | 214 | 60  | 148  | 342 | 310  | 401  | 386 | 142 | 166 |
| 1997 | 236 | 721 | 264 | 63  | 55  | 158  | 370 | 437  | 189  | 998 | 958 | 258 |
| 1998 | 327 | 641 | 518 | 720 | 590 | 173  | 302 | 673  | 773  | 430 | 144 | 149 |
| 1999 | 142 | 204 | 125 | 240 | 95  | 200  | 597 | 122  | 113  | 355 | 135 | 95  |
| 2000 | 138 | 188 | 185 | 147 | 133 | 127  | 306 | 157  | 848  | 801 | 204 | 237 |
| 2001 | 437 | 640 | 304 | 288 | 353 | 255  | 314 | 171  | 252  | 856 | 161 | 256 |
| 2002 | 188 | 145 | 107 | 180 | 142 | 246  | 174 | 445  | 365  | 521 | 513 | 429 |
| 2003 | 120 | 149 | 219 | 85  | 85  | 151  | 97  | 50   | 55   | 122 | 139 | 421 |
| 2004 | 163 | 96  | 57  | 108 | 165 | 106  | 367 | 100  | 290  | 524 | 284 | 169 |
| 2005 | 182 | 84  | 75  | 149 | 515 | 409  | 217 | 183  | 1083 | 759 | 375 | 98  |
| 2006 | 97  | 87  | 75  | 54  | 40  | 39   | 43  | 146  | 121  | 112 | 211 | 199 |
| 2007 | 127 | 127 | 258 | 117 | 379 | 160  | 341 | 200  | 258  | 414 | 425 | 133 |
| 2008 | 171 | 162 | 129 | 146 | 224 | 193  | 173 | 133  | 276  | 664 | 625 | 160 |
| 2009 | 162 | 104 | 115 | 43  | 40  | 55   | 349 | 560  | 717  | 608 | 268 | 175 |
| 2010 | 361 | 396 | 222 | 563 | 731 | 265  | 247 | 265  | 148  | 168 | 147 | 379 |
| 2011 | 343 | 712 | 341 | 301 | 246 | 204  | 603 | 875  | 1120 | 280 | 158 | 90  |
| 2012 | 175 | 175 | 104 | 49  | 54  | 198  | 182 | 213  | 86   | 220 | 89  | 67  |
| 2013 | 199 | 124 | 251 | 134 | 59  | 264  | 249 | 591  | 590  | 379 | 141 | 156 |
| 2014 | 260 | 117 | 201 | 155 | 357 | 893  | 488 | 150  | 256  | 503 | 270 | 211 |