ESTUDOS PARA A LICITAÇÃO DA EXPANSÃO DA GERAÇÃO

Revisão Extraordinária dos Montantes de Garantia Física de Energia das UHEs Jirau, Quebra Queixo e Suíça

GOVERNO FEDERAL MINISTÉRIO DE MINAS E ENERGIA

ESTUDOS PARA A LICITAÇÃO DA **EXPANSÃO DA GERAÇÃO**

Ministério de Minas e Energia

Bento Costa Lima Leite de Albuquerque Junior

Secretária Executiva do MME

Marisete Fátima Dadald Pereira

Secretário de Planejamento e Desenvolvimento Energético

Reive Barros dos Santos

Secretário de Energia Elétrica

Ricardo de Abreu Sampaio Cyrino

Secretário-Adjunto de Petróleo, Gás Natural e **Combustíveis Renováveis**

Márcio Félix Carvalho Bezerra

Secretário de Geologia, Mineração e Transformação

Alexandre Vidigal de Oliveira

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei nº 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente

Thiago Vasconcellos Barral Ferreira

Diretor de Estudos Econômico-Energéticos e **Ambientais**

Thiago Vasconcellos Barral Ferreira (interino)

Diretor de Estudos de Energia Elétrica

Erik Eduardo Rego

Diretor de Estudos de Petróleo, Gás e **Biocombustíveis**

José Mauro Ferreira Coelho

Diretor de Gestão Corporativa

Álvaro Henrique Matias Pereira

URL: http://www.epe.gov.br

Sede

Esplanada dos Ministérios Bloco "U" Sala 744 - Brasília - DF BRASIL CEP: 70.065-900

Escritório Central Av. Rio Branco, 01 – 11º Andar 20090-003 - Rio de Janeiro - RJ

Revisão Extraordinária dos Montantes de Garantia Física de Energia das UHEs Suíça, Quebra Queixo e Jirau

Coordenação Geral

Thiago Vasconcellos Barral Ferreira Erik Eduardo Rego

Coordenação Executiva

Jorge Trinkenreich

Equipe Técnica

Fernanda Gabriela Batista dos Santos Luis Paulo Scolaro Cordeiro Rafaela Veiga Pillar Thais Iguchi Thiago Correa César

Nº EPE-DEE-RE-016/2019-r0

Data: 08 de abril de 2019

Histórico de Revisões

Rev.	Data	Descrição
0	08/04/2019	Publicação Original

SUMÁRIO

APRES	SENTAÇAO	8
1. In	ntrodução	9
2. Ci Energ	ritérios e Premissas para a Revisão Extraordinária de Garantia Fís ia	
3. C	onfiguração de Referência	11
4. R	evisão Extraordinária da Garantia Física da UHE Jirau	15
4.4.	Fato Relevante e Características Técnicas Associadas	16
4.5.	Parâmetros comuns às duas configurações de referência	18
5. R	evisão Extraordinária da Garantia Física da UHE Quebra Queixo	18
5.4.	Fatos Relevantes e Características Técnicas Associadas	18
5.5.	Parâmetros comuns às duas configurações de referência	20
6. R	evisão Extraordinária da Garantia Física da UHE Suíça	20
6.4.	Fatos Relevantes e Características Técnicas Associadas	21
6.5.	Parâmetros comuns às duas configurações de referência	
7. R	esultados Obtidos	24
7.1.	Resultados obtidos – UHE Jirau – Condição de Santo Antônio conforme PBCA	27
8. R	esumo dos Resultados	
Apênd	dice 1 – Resultados obtidos no cálculo dos parâmetros médios	31
I.	UHE Jirau	
I.1.	Ajuste da Curva Colina da Turbina	31
I.2.	Cálculo do Rendimento Médio do Conjunto Turbina-Gerador	31
I.2.1.	Condição atual de Santo Antônio (Autorização Especial 15/2018)	32
I.2.2.	Condição de Santo Antônio conforme PBCA	33
II.	UHE Quebra Queixo	34
II.1.	Ajuste da Curva Colina da Turbina	34
II.2.	Cálculo do Rendimento Médio do Conjunto Turbina-Gerador	34
III.	UHE Suíça	35
III.1.	Ajuste da Curva Colina da Turbina	35
III.2.	Cálculo do Rendimento Médio do Conjunto Turbina-Gerador	36
III.3.	Cálculo da Perda Hidráulica Média	38
Anexo	o 1 — Configuração Hidrotérmica de Referência	39
Anexo	o 2 — Ficha de dados - UHE Jirau	43
Anexa	o 3 — Ficha de dados - UHE Jirau — PBCA de Santo Antônio	45

Anexo 4 — Ficha de dados - UHE Quebra Queixo	46
Anexo 5 — Ficha de dados - UHE Suíca	49

ÍNDICE DE TABELAS

Tabela I – Proporcionalidade da Carga de Energia – Ano 2024	11
Tabela 2 – Sazonalidade da Carga de Energia – Ano 2024	
Tabela 3 – Valores de TEIF e IP estabelecidos na Portaria nº 484/2014	13
Tabela 4 – UHE Jirau - Garantia Física vigente – Portaria MME nº 155/2018	15
Tabela 5 – Parâmetros nominais da UHE Jirau – Casa de força da margem direita	15
Tabela 6 – Parâmetros nominais da UHE Jirau – Casa de força da margem esquerda	
Tabela 7 – UHE Jirau - Fatos Relevantes	16
Tabela 8 – UHE Jirau – Fatos Relevantes e Características Técnicas associadas	17
Tabela 9 – UHE Jirau – Fatos Relevantes e Características Técnicas associadas – Configuração Adiciona	al –
Operação de Santo Antônio Permanente	17
Tabela 10 – UHE Quebra Queixo - Garantia Física vigente – Portaria MME nº 178/2017	18
Tabela 11 – UHE Quebra Queixo - Fatos Relevantes	18
Tabela 12 – UHE Quebra Queixo – Ponto nominal de operação da turbina	
Tabela 13 – UHE Quebra Queixo – Fatos Relevantes e Características Técnicas associadas	19
Tabela 14 – UHE Suíça - Garantia Física vigente – Portaria MME nº 519/2005	
Tabela 15 – UHE Suíça - Fatos Relevantes	
Tabela 16 – UHE Suíça – Ponto nominal de operação da turbina	21
Tabela 17 – UHE Suíça – Fatos Relevantes e Características Técnicas associadas	
Tabela 18 – UHE Suíça – Parâmetros comuns às configurações de referência: atualizações em relação a	
original	23
Tabela 19 – Carga crítica e média dos CMO e riscos anuais de déficit	24
Tabela 20 – Energias Firmes e Garantias Físicas – UHEs Quebra Queixo, Jirau e Suíça	25
Tabela 21 – UHE Quebra Queixo - Resumo dos parâmetros - Modernização	
Tabela 22 – UHE Quebra Queixo - Garantias Físicas no período de Modernização	
Tabela 23 – Carga crítica e média dos CMO e riscos anuais de déficit	
Tabela 24 – Energias Firmes e Garantias Física – UHEs Jirau – Condição de Santo Antônio conforme Pa	
Tabela 25 – Evolução da Garantia Física – UHE Suíça	
Tabela 26 – Evolução da Garantia Física – UHE Quebra Queixo	
Tabela 27 – UHE Jirau - Garantias Físicas Publicadas	
Tabela 28 – Resumo dos Resultados	29
Tabela 28 – Resumo dos Resultados – UHE Jirau – Condição de Santo Antônio conforme PBCA	30
Tabela 29 – Garantias Físicas – Período de Modernização	
Tabela 30 – UHE Jirau - Coeficientes dos polinômios ajustados para as Curvas Colina das Turbinas	
Tabela 31 – UHE Quebra Queixo - Coeficientes do polinômio ajustado para a Curva Colina da Turbina	
Tabela 32 – UHE Suíça - Coeficientes dos polinômios ajustados para as Curvas Colina das Turbinas	
Tabela 33 – Configuração Hidrelétrica	
Tabela 34 – Configuração Termelétrica	

APRESENTAÇÃO

A presente Nota Técnica registra os estudos efetuados pela Empresa de Pesquisa Energética - EPE, em conformidade com a regulamentação vigente, para o cálculo da revisão extraordinária dos montantes de garantia física de energia das usinas hidrelétricas Suíça, Quebra Queixo e Jirau.

A solicitação de revisão do montante de garantia física de energia das usinas hidrelétricas Suíça, Quebra Queixo e Jirau foi encaminhada à EPE por meio do Ofício nº 70/2018/DPE/SPE-MME, de 03 de outubro de 2018, em consonância com o parágrafo único do artigo 8º da Portaria MME nº 406/2017. O referido ofício caracteriza os fatos relevantes para as usinas em conformidade com o artigo 5º da Portaria MME nº 406, de 16 de outubro de 2017.

A EPE analisou a documentação fornecida, avaliando os parâmetros energéticos associados, de forma a representar nas configurações CRA0 e CRA1 apenas o ganho de garantia física referente à alteração dos fatos relevantes indicados nesta revisão extraordinária.

Nos Anexos 2 a 4 são apresentadas as fichas de dados das usinas hidroelétricas, com destaque em vermelho para os parâmetros considerados de forma distinta em cada configuração de referência.

1. Introdução

Consoante a Lei nº. 10.848, de 15 de março de 2004, Art. 1º, §7º, "o CNPE proporá critérios gerais de garantia de suprimento, a serem considerados no cálculo das garantias físicas e em outros respaldos físicos para a contratação de energia elétrica, incluindo importação". E, segundo o Decreto 5.163 de 30 de junho de 2004, Art. 4º, §2º, "O MME, mediante critérios de garantia de suprimento propostos pelo CNPE, disciplinará a forma de cálculo da garantia física dos empreendimentos de geração, a ser efetuado pela Empresa de Pesquisa Energética – EPE, mediante critérios gerais de garantia de suprimento".

Segundo as diretrizes vigentes para revisão extraordinária dos montantes de garantia física de energia de usina hidrelétrica despachada centralizadamente no Sistema Interligado Nacional - SIN, definidas pela Portaria MME 406/2017, o cálculo foi realizado conforme metodologia estabelecida na Portaria nº 101, de 22 de março de 2016, considerando as premissas apresentadas na Portaria nº 150, de 28 de fevereiro de 2019.

2. Critérios e Premissas para a Revisão Extraordinária de Garantia Física de Energia

A Portaria MME nº 406, de 16 de outubro de 2017, estabelece os fatos relevantes e a metodologia para revisão extraordinária dos montantes de garantia física de energia de Usina Hidrelétrica despachada centralizadamente no Sistema Interligado Nacional - SIN. Esta portaria revogou a PRT MME nº 861/2010.

Os benefícios indiretos poderão ser revisados, nos termos da PRT 406/2017.

O Ministério de Minas e Energia - MME poderá determinar, para a revisão extraordinária dos montantes de garantia física de energia, novos fatos relevantes não considerados nos incisos I a VI do art. 4º da citada Portaria.

As características técnicas referidas nos art. 4º e 5º da Portaria MME 406/2017 deverão ser aprovadas ou homologadas por meio de atos próprios a serem publicados pela ANEEL.

Embora a perda hidráulica e os rendimentos de turbina e gerador, analisados pela ANEEL, sejam os nominais, nas simulações energéticas, os parâmetros adotados serão os médios, pois refletem de maneira mais apropriada as condições da usina ao longo de uma simulação

dinâmica da sua operação, sujeita a variadas condições de queda e vazão. Os parâmetros médios serão obtidos segundo metodologia apresentada na Nota Técnica EPE-DEE-RE-037/2011-r2.

Uma vez definidas pelo MME/ANEEL as características técnicas que constituem fatos relevantes, eventualmente outros parâmetros podem ser impactados. Por exemplo, no caso de alteração de potência instalada ou número de unidades geradoras, poderão ser impactados: rendimento médio do conjunto turbina-gerador, vazão efetiva¹, perdas de carga no circuito hidráulico de geração, perdas hidráulicas médias, queda de referência ², taxas de indisponibilidades das unidades geradoras. Portanto, se faz necessária uma avaliação global do empreendimento que está pleiteando revisão de garantia física.

A partir de uma configuração de referência a EPE estabelecerá as configurações de referência atual CRA0, CRA1 e CRA1*.

A elaboração da CRAO requer a identificação dos valores considerados no cálculo de garantia física vigente, seja no conjunto de arquivos dos modelos de otimização e simulação utilizados à época do cálculo, seja em correspondências trocadas entre o responsável pelo cálculo e a ANEEL, nos contratos de concessão, etc. Na ausência de informações, serão considerados os valores cadastrados no PMO.

Os dados comuns às duas configurações de referência atual, CRA0 e CRA1 ou CRA0 e CRA1*, serão os mais atualizados possíveis.

Para as usinas que terão suas garantias físicas revistas contemplando as alterações nas características técnicas listadas apenas no artigo 4º, a nova garantia física será composta pela soma da garantia física vigente mais a diferença entre as garantias físicas obtidas nas configurações de referência CRA1 e CRA0.

Para as usinas que terão suas garantias físicas revistas contemplando as alterações nas características técnicas listadas no artigo 5º ou nos artigos 4º e 5º, a nova garantia física será obtida pela soma da garantia física local vigente com duas parcelas obtidas pela aplicação da Portaria MM nº 406/2017: o benefício indireto novo e a diferença entre as garantias físicas obtidas nas configurações de referência CRA1* e CRA0.

¹ No modelo Newave utiliza-se um parâmetro denominado vazão efetiva, que não se confunde com a vazão nominal unitária da turbina. A vazão efetiva é definida como a razão entre a potência unitária do gerador e o produto entre o rendimento médio do conjunto turbina-gerador, a queda de referência, a massa específica da água e a aceleração da gravidade. Portanto, em cada uma das configurações de referência ela vai ser calculada a partir dos valores cadastrados.

² A queda de referência é definida como sendo aquela para a qual a turbina, com abertura total do distribuidor fornece a potência nominal do gerador, conforme Manual de Estudos de Viabilidade da Eletrobrás, edição 1997. Nas análises subsequentes esta definição será adotada onde for necessária a avaliação da queda de referência da turbina.

3. Configuração de Referência

As configurações de referência CRA0 e CRA1 são baseadas na configuração adotada no caso base do leilão de energia nova A-4/2019. A Configuração Hidrotérmica, descrita no Informe Técnico **EPE-DEE-IT-012/2019**, é apresentada no Anexo 1.

A Portaria nº 150, de 28 de fevereiro de 2019, apresenta as premissas que devem ser empregadas no cálculo da garantia física de energia de UHE e UTE despachadas centralizadamente pelo ONS. Algumas informações são detalhadas a seguir.

- Modelos Utilizados, conforme definição do MME:
 - NEWAVE Versão 25
 - o SUISHI Versão 13.0 (Encad versão 5.5.15)
- Usinas não despachadas centralizadamente não são simuladas individualmente nos modelos computacionais utilizados no cálculo de garantia física. Representa-se, apenas no modelo NEWAVE, uma expectativa de geração agregada por subsistema e por mês. Esse montante é descontado do mercado a ser atendido. Para esta configuração, a referência utilizada é o PMO de março de 2019.
- Proporcionalidade da carga: prevista para o ano 2024, segundo Plano Decenal de Expansão de Energia 2027 (PDE 2027), conforme tabela a seguir:

Tabela 1 - Proporcionalidade da Carga de Energia - Ano 2024

MERCADO DE REFERÊNCIA 2024 - PDE 2027					
SE	S	NE	N		
49.933	14.044	13.675	7.829		
58,4%	16,4%	16,0%	9,2%		
BRASIL					
85.480					

 Sazonalidade da carga: prevista para o ano 2024, segundo PDE 2027, conforme tabela a seguir:

Tabela 2 - Sazonalidade da Carga de Energia - Ano 2024

Região	jan	fev	mar	abr	mai	jun	jul	ago	set	out	nov	dez
Sudeste	1,026482	1,064534	1,041983	0,999646	0,963758	0,949619	0,949298	0,976175	0,999546	1,015307	1,002210	1,011442
Sul	1,068822	1,110621	1,049810	0,975184	0,953466	0,955531	0,967423	0,970342	0,958522	0,977178	1,000819	1,012283
Nordeste	1,013894	1,014333	1,034004	1,016161	0,991371	0,964534	0,948592	0,961316	0,987569	1,014406	1,026837	1,026984
Norte	0,975721	0,985428	1,003183	1,006120	1,001139	0,969334	0,975721	1,022853	1,034093	1,020298	1,013656	0,992453
SIN	1,027	1,057	1,038	0,999	0,970	0,955	0,955	0,977	0,994	1,009	1,007	1,012

Parâmetros do SUISHI:

- Sazonalidade da carga de energia do SIN previsto para o ano de 2024, segundo PDE 2027.
- Funcionalidades específicas ativas em usinas hidrelétricas:
- Simulação da bacia do rio Paraíba do Sul com regras especiais, considerando a UHE Simplício como usina de acoplamento hidráulico. Foi considerado o arquivo default com os dados da bacia do rio Paraíba do Sul;
- Em virtude de a simulação do modelo SUISHI empregar série de vazões naturais para a UHE Simplício, é necessário incluir a vazão remanescente (igual a 90 m³/s) como desvio d'água dessa usina e retorno na UHE Ilha dos Pombos. Na simulação com o modelo NEWAVE essa vazão remanescente já está descontada na série artificial utilizada na UHE Simplício;
- Adicionalmente, é necessário alterar os usos consuntivos da UHE Simplício no modelo SUISHI devido ao acoplamento hidráulico com a bacia do Alto Paraíba do Sul, ou seja, deve-se considerar o uso consuntivo incremental entre as UHEs Funil e Simplício para a UHE Simplício. No modelo NEWAVE, como não há acoplamento hidráulico entre as bacias do Alto e Baixo Paraíba do Sul, considera-se: (i) a UHE Funil apontando para a UHE Nilo Peçanha, e (ii) na UHE Simplício o uso consuntivo incremental entre as UHEs Funil e Simplício somado ao uso consuntivo acumulado da UHE Funil;
- Operação do reservatório de Lajes em paralelo com a bacia do rio Paraíba do Sul (não foi considerada curva de controle de cheias);
- o Curvas de operação de reservatório para as UHEs Jirau e Santo Antônio;
- Restrição de volume máximo operativo sazonal para a UHE Sinop, devido à preservação de lagoas;
- Uso do reservatório a fio d'água da UHE Belo Monte para atendimento à vazão mínima. Foi considerado o compartilhamento do reservatório com a UHE Belo Monte Complementar;
- Consideração de posto intermediário de vazões influenciando o nível do canal de fuga da UHE Belo Monte (posto 293);

- Modelagem do hidrograma ecológico bianual de Belo Monte com as seguintes alterações:
 - → Série de vazões: série de vazões artificiais (posto 292), em vez da série natural (posto 288);
 - → Desvios d'água: apenas os usos consuntivos, pois o hidrograma ecológico bianual já foi descontado na série de vazões artificiais.
- Manutenção: Para as usinas hidrelétricas e termelétricas, não foi considerada manutenção explícita, e, sim, índices de indisponibilidade forçada - TEIF e indisponibilidade programada - IP.

Para as usinas hidrelétricas com mais de sessenta meses de operação comercial, após completa motorização³, foram considerados os valores de TEIF e IP apurados pelo ONS (referência: PMO janeiro/2019). Para as demais usinas hidrelétricas, foram considerados os seguintes índices, estabelecidos na Portaria MME nº 484, de 11 de setembro de 2014, conforme redação da Portaria MME nº 248, de 02 de junho de 2015:

Tabela 3 - Valores de TEIF e IP estabelecidos na Portaria nº 484/2014⁴

Limites (MW)	TEIF (%)	IP (%)
Potência Unitária <= 29 MW	2,068	4,660
29 < Potência Unitária <= 59 MW	1,982	5,292
59 < Potência Unitária <= 199 MW	1,638	6,141
199 < Potência Unitária <= 699 MW	2,133	3,688
699 < Potência Unitária <= 1300 MW	3,115	8,263

Para as usinas que apresentam mais de um conjunto de máquinas com potências unitárias em diferentes faixas da tabela acima, utilizou-se a média dos índices ponderada pela potência total de cada conjunto.

Para as usinas termelétricas em operação comercial, foram consideradas as indisponibilidades apuradas pelo ONS⁵, considerando os valores de TEIF e IP constantes do PMO de referência. Para as demais usinas termelétricas, foram considerados os valores constantes nos respectivos cálculos de garantia física.

 Restrições Operativas Hidráulicas: para as usinas em operação, foram consideradas as restrições operativas recomendadas pelo ONS como sendo de caráter estrutural, segundo

³ Data de referência: 31/12/2017.

⁴ Conforme redação da Portaria nº 248, de 2 de junho de 2015.

 $^{^{5}}$ De acordo com a Resolução ANEEL n^{o} 614, de 03 de junho de 2014.

- o Relatório DPP-REL-0169/2017 "Inventário das restrições operativas hidráulicas dos aproveitamentos hidrelétricos Revisão 1 de 2017".
- Usos consuntivos e vazões remanescentes: o uso consuntivo é modelado como retirada de água sem devolução, enquanto a vazão remanescente retorna a água desviada para a usina de jusante. Ambas estão sujeitas à penalização por não atendimento. Foram considerados os valores extrapolados para o ano de 2024 conforme metodologia utilizada na Revisão Ordinária de Garantia Física de Energia das Usinas Hidrelétricas e apresentada no relatório "Revisão Ordinária de Garantia Física de Energia das Usinas Hidrelétricas UHEs Despachadas Centralizadamente no Sistema Interligado Nacional SIN", de 25 de abril de 2017. Este relatório encontra-se disponível no site do MME.
- Histórico de vazões: foi definido conforme metodologia estabelecida, em conjunto com o ONS, na atualização das séries de vazões naturais para a Revisão Ordinária de Garantia Física de Energia das Usinas Hidrelétricas. Utilizou-se como base o Relatório ONS DOP-REL-0010/2018 – Novembro / 2018 - "Atualização de séries históricas de vazões - Período 1931 a 2017".

4. Revisão Extraordinária da Garantia Física da UHE Jirau

A garantia física vigente da UHE Jirau foi estabelecida na Portaria MME nº 155, de 11 de julho de 2018, retificada no D.O. de 19.02.2019, conforme tabela abaixo:

Tabela 4 – UHE Jirau - Garantia Física vigente – Portaria MME nº 155/2018

Usina	Rio	UF	Número de Unidades	Potência Total (MW)	Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Total (MWmed)
Jirau	Madeira	RO	50	3.750,0	2.205,0	2,9	2.207,9

A validade e eficácia dos montantes de garantia física de energia da UHE Jirau e da UHE Santo Antônio dependem da manutenção das condições estabelecidas na Autorização Especial nº 15/2018⁶, de 30 de maio de 2018, expedida pelo Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA.

Por outro lado, caso a UHE Santo Antônio obtenha licença de operação para a condição original do Projeto Básico Complementar Alternativo (PBCA)⁷, aprovado condicionalmente pelo Despacho ANEEL 2.075/2013, ato contínuo, os valores publicados nas Portarias SPDE/MME nº 94/2013 e 337/2015 serão restabelecidos.

Desta forma, dada esta condição especial da UHE Jirau na qual se conhece de antemão que o valor final de garantia física a ela atribuída depende da condição de licenciamento da UHE Santo Antônio, conclui-se que o tratamento mais adequado para a presente revisão deve considerar os dois possíveis cenários: (i) condição temporária e provisória da Autorização Especial nº 15/2018; (ii) condição permanente referente ao PBCA de Santo Antônio. As alterações em características técnicas motivadoras desta revisão extraordinária de garantia física são decorrentes da homologação dos parâmetros de rendimento nominal das turbinas e geradores referentes às unidades geradoras de nº 1 a nº 50 da referida usina, conforme definida no Ofício nº 367/2018-SCG/ANEEL, de 05 de junho de 2018.

Tabela 5 - Parâmetros nominais da UHE Jirau - Casa de força da margem direita

Parâmetros nominais	
Rendimento nominal da turbina (%)	94,53
Rendimento nominal do gerador (%)	98,45

6

⁶ A Autorização Especial 15/2018 autoriza, em caráter excepcional, a operação do reservatório da UHE Santo Antônio na cota 71,3 m para vazões afluentes inferiores a 34.000 m³/s. A partir deste valor de vazão o nível operativo deve ser rebaixado até a cota 70,5 m.
⁷ O PBCA considera um nível operacional de 71,3 m para vazões afluentes inferiores a 38.550 m³/s e para valores superiores a esta vazão, rebaixamento do reservatório até a cota 70,5 m.

Tabela 6 - Parâmetros nominais da UHE Jirau - Casa de força da margem esquerda

Parâmetros nominais	
Rendimento nominal da turbina (%)	95,00
Rendimento nominal do gerador (%)	98,21

4.4. Fato Relevante e Características Técnicas Associadas

Os fatos relevantes estabelecidos no Ofício nº 367/2018-SCG/ANEEL foram: alteração do rendimento nominal da turbina e do rendimento nominal do gerador. Os fatos relevantes considerados são apresentados na tabela a seguir:

Tabela 7 - UHE Jirau - Fatos Relevantes

Fatos Relevantes			Fonte dos valores
Rendimento nominal da turbina 1	De	94,17%	Ofício nº 367/2018-SCG/ANEEL
(margem direita)	Para	94,53%	Ofício nº 367/2018-SCG/ANEEL
Rendimento nominal da turbina 2	De	94,86%	Ofício nº 367/2018-SCG/ANEEL
(margem esquerda)	Para	95,00%	Ofício nº 367/2018-SCG/ANEEL
Dandimanta naminal da garader 1	De	98,20%	Ofício nº 367/2018-SCG/ANEEL
Rendimento nominal do gerador 1	Para	98,45%	Ofício nº 367/2018-SCG/ANEEL
Dending outs are united to sound out?	De	98,21%	Ofício nº 367/2018-SCG/ANEEL
Rendimento nominal do gerador 2	Para	98,21%	Ofício nº 367/2018-SCG/ANEEL

Neste ponto é importante observar que os fatos relevantes ora homologados pela ANEEL consideraram os relatórios de ensaio nas usinas (*index tests*) das unidades nº 17 e 49, sendo uma correspondente a cada fabricante/consórcio, além dos relatórios e curvas colina referentes aos ensaios de modelo reduzido. Ocorre que estas mesmas curvas colina já vinham sendo utilizadas nas revisões extraordinárias da UHE Jirau desde 2011, sendo que desta forma, os cálculos ora registrados mantém os mesmos dados de curva colina já em uso. Ressalta-se que este entendimento foi objeto de análise do Ofício nº 1032/2018/DEE/EPE, de 30 de novembro de 2018, e obteve concordância da ANEEL mediante Ofício nº 822/2018-SCG/ANEEL, de 17 de dezembro de 2018.

As características técnicas associadas aos fatos relevantes que serão consideradas de forma distinta nas duas configurações de referência (CRA0 e CRA1) são: rendimento médio do conjunto turbina-gerador, vazão efetiva e canal de fuga médio⁸.

-

⁸ O canal de fuga médio a ser considerado em cada uma das configurações é a média de todo o histórico de vazões, obtido na simulação com o modelo SUISHI.

A CRAO procura refletir as condições do cálculo da garantia física vigente, desse modo, os valores considerados para os fatos relevantes e para as características técnicas associadas serão os constantes no conjunto de arquivos NEWAVE utilizados no cálculo de garantias físicas para a Portaria MME nº 155/2018 (Nota Técnica EPE-DEE-RE-045/2018-r2).

Tabela 8 – UHE Jirau – Fatos Relevantes e Características Técnicas associadas

Fatos Relevantes e Características Técnicas associadas	CRA0	CRA1	Fonte dos valores
Rendimento médio do conjunto turbina-gerador	93,4%	93,7%	CRA0: NT EPE-DEE-RE-045-2018-r2 CRA1: Apêndice 1
Vazão efetiva	538	537	Compatível com os demais dados
Canal de fuga médio	73,19	73,19	Simulação do modelo SUISHI

A validade e eficácia dos montantes de garantia física de energia vigentes da UHE Jirau e da UHE Santo Antônio dependem da manutenção das condições estabelecidas na Autorização Especial nº 15/2018, de 30 de maio de 2018, expedida pelo Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA.

A Portaria MME nº 155/2018 prevê que, caso a UHE Santo Antônio obtenha licença para operar seu reservatório nas condições estabelecidas no Despacho ANEEL nº 2.075/2013, as garantias físicas de energia da UHE Santo Antônio e da UHE Jirau retornarão aos valores estabelecidos na Portaria SPE/MME nº 94/2013 e na Portaria SPE/MME nº 337/2015, respectivamente.

No entanto, a partir desta Revisão Extraordinária, se a UHE Santo Antônio obtiver a licença necessária, a garantia física da UHE Jirau não deverá retornar aos valores estabelecidos na Portaria SPE/MME nº 337/2015, pois deverá considerar também os fatos relevantes aqui listados.

Portanto, será feito um cálculo adicional com a UHE Santo Antônio em sua condição operativa permanente, referente ao Projeto Básico Complementar Alternativo (PBCA), ou seja, operação na cota 71,3m até vazões afluentes de 38.550 m³/s, tanto na CRA0 quanto na CRA1.

Tabela 9 — UHE Jirau — Fatos Relevantes e Características Técnicas associadas — Configuração Adicional — Operação de Santo Antônio Permanente

Fatos Relevantes e Características Técnicas	CRA0	CRA1	Fonte dos valores
associadas Rendimento médio do conjunto turbina-gerador	93,1%	93,6%	CRA0: NT EPE-DEE-RE-151-2015-r0 CRA1: Apêndice 1
Vazão efetiva	540	537	Compatível com os demais dados
Canal de fuga médio	73,22	73,22	Simulação do modelo SUISHI

4.5. Parâmetros comuns às duas configurações de referência

Os parâmetros comuns às duas configurações de referência são os mais atualizados possíveis.

5. Revisão Extraordinária da Garantia Física da UHE Quebra Queixo

A garantia física vigente da UHE Quebra Queixo foi definida pela Portaria MME nº 178, de 3 de maio de 2017, por ocasião da revisão ordinária de garantia física de energia das usinas hidrelétricas despachadas centralizadamente no SIN, conforme tabela abaixo.

Tabela 10 – UHE Quebra Queixo - Garantia Física vigente – Portaria MME nº 178/2017

Usina	Rio	UF	Número de Unidades	Potência Total (MW)	Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Total (MWmed)
Quebra Queixo	Chapecó	SC	3	120,0	57,4	0	57,4

Anteriormente a essa revisão, a energia assegurada da UHE Quebra Queixo correspondia a um montante de 59,7 MW médios, conforme Contrato de Concessão de Geração ANEEL nº 94/2000.

As alterações em características técnicas motivadoras desta revisão extraordinária de garantia física são decorrentes da modernização das unidades geradoras, com alteração dos parâmetros potência instalada, rendimento nominal da turbina e rendimento nominal do gerador, conforme Ofício nº 653/2018-SCG/ANEEL e a Nota Técnica nº 446/2018-SGH/ANEEL, ambos de 27 de setembro de 2018.

5.4. Fatos Relevantes e Características Técnicas Associadas

Os fatos relevantes estabelecidos no Ofício nº 653/2018-SGH/ANEEL foram: alteração da potência instalada, do rendimento nominal da turbina e do rendimento nominal do gerador. Os fatos relevantes considerados são apresentados na tabela a seguir:

Tabela 11 - UHE Quebra Queixo - Fatos Relevantes

Fatos Relevantes			Fonte dos valores
Potência instalada	De	120,000 MW	Nota Técnica nº 446/2018-SGH/ANEEL ⁹
Potericia iristalaua	Para	127,560 MW	Ofício nº 653/2018-SCG/ANEEL
Rendimento nominal da turbina	De	94,65%	Nota Técnica nº 446/2018-SGH/ANEEL

⁹ Nota técnica referente a análise da solicitação de revisão extraordinária de garantia física da UHE Quebra Queixo

-

Fatos Relevantes			Fonte dos valores
	Para	93,97%	Ofício nº 653/2018-SCG/ANEEL
Dandimente neminal de gerader	De	98,18%	Nota Técnica nº 446/2018-SGH/ANEEL
Rendimento nominal do gerador	Para	98,26%	Ofício nº 653/2018-SCG/ANEEL

Contudo, nos termos da Nota Técnica nº 446/2018-SCG/ANEEL, a validação dos parâmetros pela ANEEL, mediante a publicação de despacho, ocorrerá somente após a realização dos ensaios que comprovem efetivamente os valores ora solicitados pela Companhia Energética Chapecó (CEC).

O ponto nominal de operação da turbina da UHE Quebra Queixo é apresentado na tabela abaixo.

Tabela 12 – UHE Quebra Queixo – Ponto nominal de operação da turbina

Parâmetros Projeto Proposto		Fonte dos valores
Potência unitária nominal ¹⁰	43,310 MW	
Vazão nominal	40,16 m ³ /s	Nota Técnica nº 446/2018-SGH/ANEEL
Queda líquida nominal	117,30 m	CT QGE 96/2018
Rendimento nominal	93,97%	-

As características técnicas associadas aos fatos relevantes que serão consideradas de forma distinta nas duas configurações de referência (CRAO e CRA1) são: potência instalada, rendimento médio do conjunto turbina-gerador, vazão efetiva e canal de fuga médio¹¹.

A CRAO procura refletir as condições do cálculo da garantia física vigente, desse modo, os valores considerados para os fatos relevantes e para as características técnicas associadas serão os constantes da revisão ordinária de garantia física da UHE Quebra Queixo.

Tabela 13 – UHE Quebra Queixo – Fatos Relevantes e Características Técnicas associadas

Fatos Relevantes e Características Técnicas associadas	CRA0	CRA1	Fonte dos valores
Potência instalada	120,00 MW	127,56 MW	CRA0: Nota Técnica nº 446/2018-SGH/ANEEL CRA1: Ofício nº 653/2018-SCG/ANEEL
Rendimento médio do conjunto turbina-gerador	91,99%	92,30%	CRA0: deck ROGF CRA1: Apêndice 1
Vazão efetiva	38	40	Compatível com os demais dados
Canal de fuga médio	426,64	426,65	Simulação do modelo SUISHI

¹⁰ Potência no eixo da turbina já descontadas as perdas nos mancais.

-

¹¹ O canal de fuga médio a ser considerado em cada uma das configurações é a média de todo o histórico de vazões, obtido na simulação com o modelo SUISHI.

5.5. Parâmetros comuns às duas configurações de referência

Os parâmetros comuns às duas configurações de referência são os mais atualizados possíveis e, nesse caso, são os utilizados no PMO.

6. Revisão Extraordinária da Garantia Física da UHE Suíça

A garantia física vigente da UHE Suíça foi estabelecida na Portaria MME nº 519, de 01 de novembro de 2005, com base nos dados do Ofício nº 900/2005-SGH/ANEEL, de 31 de agosto de 2005, referente a potência instalada de 30,060 MW, conforme tabela abaixo:

Tabela 14 – UHE Suíça - Garantia Física vigente – Portaria MME nº 519/2005

Usina	Rio	UF	Número de Unidades	Potência Total (MW)	Garantia Física (MWmed)	Metodologia
Suíça	Santa Maria	ES	2	30,060	18,91	RES ANEEL 169/2001

A garantia física vigente foi obtida segundo a metodologia definida na Resolução ANEEL nº 169, de 03 de maio de 2001, que estabelecia as regras para definição da energia assegurada associada aos empreendimentos não despachados centralizadamente.

O Despacho ANEEL nº 1.493, de 20 de abril de 2009, aprovou o Projeto Básico de Repotenciação da UHE Suíça, alterando a potência para 33,900 MW. No entanto, a garantia física da usina não foi alterada na época. Ressalta-se que este fato é anterior à Portaria MME nº 861, de 18 de outubro de 2010, a qual estabeleceu os fatos relevantes e a metodologia para revisão extraordinária dos montantes de garantia física de energia de usina hidréletrica, pelo Sistema Interligado Nacional - SIN, com capacidade instalada superior a 30 MW.

Dessa forma, serão considerados nessa revisão de garantia física os dados referentes a garantia física calculada com a potência instalada de 30,060 MW, ou seja, anteriores à aprovação do Despacho ANEEL nº 1.493/2009, considerando o fato que a CRAO procura refletir as condições do cálculo da garantia física vigente.

As alterações em características técnicas motivadoras desta revisão extraordinária de garantia física são decorrentes da aprovação do Projeto Básico de Repotenciação da usina pelo Despacho ANEEL nº 727, de 03 de abril de 2018, posterior ao Despacho ANEEL nº 1.493/2009.

6.4. Fatos Relevantes e Características Técnicas Associadas

Os fatos relevantes estabelecidos no Ofício nº 207/2018-SCG/ANEEL foram: alteração da potência instalada, das perdas hidráulicas nominais no circuito adutor, do rendimento nominal da turbina, do rendimento nominal do gerador e da queda líquida nominal. Os fatos relevantes considerados são apresentados na tabela a seguir:

Tabela 15 – UHE Suíça - Fatos Relevantes

Fatos Relevantes			Fonte dos valores
Potência instalada	De	30,060 MW	Despacho nº 559/2004
Fotericia iristalada	Para	35,337 MW	Despacho nº 727/2018 ¹²
Perdas hidráulicas nominais no circuito	De	10,00 m	Ofício nº 900/2005-SGH/ANEEL
adutor	Para	17,17 m	Despacho nº 727/2018
Rendimento nominal da turbina 1 ¹³	Para	93,37%	Despacho nº 727/2018
Rendimento nominal da turbina 214	Para	93,15%	Despacho n° 727/2018
Rendimento nominal do gerador 1 ¹⁵	Para	97,22%	Despacho nº 727/2018
Rendimento nominal do gerador 2 ¹⁶	Para	98,10%	Despacho nº 727/2018
Oueda líquida nominal	De	240,00 m	Ofício nº 900/2005-SGH-ANEEL ¹⁷
	Para	232,87 m	Despacho nº 727/2018

A equação da perda de carga total é apresentada a seguir.

Equação 1 - UHE Suíça - Equação de perda de carga¹⁸

$$PH = 0.06276 \times Q_{total}^2$$

Onde PH se refere à perda de carga total, em metros, em função da vazão turbinada total, Q_{total} , em m³/s.

O ponto nominal de operação das turbinas da UHE Suíça é apresentado na tabela abaixo.

Tabela 16 – UHE Suíça – Ponto nominal de operação da turbina

Parâmetros	Projeto Básico de Repotenciação	Fonte dos valores
Potência unitária nominal ¹⁹	17,030 MW / 19,260 MW	Despacho nº 727/2018

¹² Despacho de aprovação do projeto básico de repotenciação.

¹⁹ A soma da potência nominal das turbinas da UHE Suíça indicadas no Despacho nº 727/2018 é superior a potência instalada total da usina referenciada nesse Despacho, porém, ressalta-se que a Portaria MME nº 406/2017, que estabelece os fatos relevantes para a revisão extraordinária de garantia física, define no Art. 4º que a Potência Instalada (capacidade bruta (MW) da central geradora) é um dos fatos relevantes, sem menção a potência nominal unitária.

¹³ O Ofício nº 900/2005-SGH-ANEEL apenas apresenta o valor referente ao conjunto turbina-gerador de 78,15%.

¹⁴ O Ofício nº 900/2005-SGH-ANEEL apenas apresenta o valor referente ao conjunto turbina-gerador de 78,15%.

¹⁵ O Ofício nº 900/2005-SGH-ANEEL apenas apresenta o valor referente ao conjunto turbina-gerador de 78,15%.

 $^{^{16}}$ O Ofício nº 900/2005-SGH-ANEEL apenas apresenta o valor referente ao conjunto turbina-gerador de 78,15%.

 $^{^{17}}$ Valor obtido da diferença entre a queda bruta nominal e as perdas hidráulicas nominais presentes no Ofício.

¹⁸ Conforme Relatório Técnico EDP RT-GOEP-HSUI-2017-01 rev5.

Parâmetros	Projeto Básico de Repotenciação	Fonte dos valores
Vazão nominal	8,061 m ³ /s / 9,107 m ³ /s	
Queda líquida nominal	232,87 m	
Rendimento nominal	93,37 % / 93,15 %	

As características técnicas associadas aos fatos relevantes que serão consideradas de forma distinta nas duas configurações de referência (CRA0 e CRA1) são: potência instalada, perda hidráulica média, rendimento médio do conjunto turbina-gerador, queda líquida de referência, vazão efetiva, polinômio vazão nível de jusante, canal de fuga médio²⁰.

A CRAO procura refletir as condições do cálculo da garantia física vigente, desse modo, os valores considerados para os fatos relevantes e para as características técnicas associadas serão os informados conforme o Projeto Básico de Repotenciação.

Tabela 17 – UHE Suíça – Fatos Relevantes e Características Técnicas associadas

Fatos Relevantes e Características Técnicas associadas	CRA0	CRA1	Fonte dos valores
Potência instalada	30,060 MW	35,337 MW	CRA0: Despacho nº 559/2004 CRA1: Despacho nº 727/2018
Perda hidráulica média	10,00 m	10,04 m	CRA0: Ofício nº 900/2005-SGH-ANEEL CRA1: Apêndice 1
Rendimento médio do conjunto turbina-gerador	78,15%	89,65%	CRA0: Ofício nº 900/2005-SGH-ANEEL CRA1: Apêndice 1
Queda líquida nominal	240,00 m	232,87 m	CRA0: Ofício nº 900/2005-SGH-ANEEL CRA1: Despacho nº 727/2018
Vazão efetiva	8	8	Compatível com os demais dados
	A0: 1,0000000E+02	A0: 9,9425159E+01	
	A1: 0,0000000E+00	A1: 1,4388388E-01	CRA0: Ofício nº 900/2005-SGH-ANEEL
PVNJ	A2: 0,0000000E+00	A2: -2,4090504E-02	e Despacho nº 1493/2009 ²¹
	A3: 0,0000000E+00	A3: 1,9210793E-03	CRA1: Despacho nº 727/2018
	A4: 0,0000000E+00	A4: -5,3527689E-05	
Canal de fuga médio	100,00	99,87	Simulação do modelo SUISHI

-

 $^{^{20}}$ O canal de fuga médio a ser considerado em cada uma das configurações é a média de todo o histórico de vazões, obtido na simulação com o modelo SUISHI.

²¹ A metodologia da Resolução ANEEL 169/2001 desconsiderava a utilização de cotas de montante e de jusante, adotando valores fixos, sem a utilização de polinômios. A partir do Ofício nº 900/2005-SGH-ANEEL, que apresenta a queda bruta de 250,00 m, e do Despacho ANEEL nº 1493/2009, que define a cota de montante de 350,00 m.a.n.m. pode-se inferir a cota do canal de fuga médio e o PVNJ como um valor fixo para a usina.

6.5. Parâmetros comuns às duas configurações de referência

Os parâmetros comuns às duas configurações de referência são os mais atualizados possíveis e, portanto, em decorrência da aprovação do Projeto Básico de Repotenciação, alguns dados foram atualizados e/ou incluídos em relação ao cálculo original, tais como os valores de TEIF e IP conforme o artigo 5º-A da Portaria MME nº 484/2014²², os usos consuntivos, a evaporação líquida, o polinômio volume cota (PVC), o polinômio cota área (PCA) e a série de vazões.

Tabela 18 – UHE Suíça – Parâmetros comuns às configurações de referência: atualizações em relação ao cálculo original

Parâmetros	Dados referentes a GF Vigente	CRA0 e CRA1	Fonte dos valores
TEIF	2,000%	2,068%	Vigente: Ofício nº 900/2005-SGH-ANEEL CRA0 e CRA1: Anexo da Portaria MME nº 484/2014
IP	1,000%	4,660%	Vigente: Planilha de cálculo da GF vigente CRA0 e CRA1: Anexo da Portaria MME nº 484/2014
Usos Consuntivos	0,00 m³/s	1,99 m³/s²³	Vigente: Ofício nº 900/2005-SGH-ANEEL CRA0 e CRA1: Portaria de Outorga nº 96/2016 AGERH-ES
Evaporação	Não Consta	128,66 mm ²⁴	Vigente: Não Consta CRAO e CRA1: Relatório Técnico EDP RT- GOEP-HSUI-2017-01 rev4
PVC	Não Consta	A0: 3.4512408E+02 A1: 1.4522664E+01 A2: 2.7701980E+00 A3: 3.5484669E+00 A4: -4.7766201E+01	Vigente: Não Consta CRA0 e CRA1: Despacho nº 727/2018
PCA	Não Consta	A0: 5.2822911E+05 A1: -6.0756211E+03 A2: 2.6203952E+01 A3: -5.0227040E-02 A4: 3.6100860E-05	Vigente: Não Consta CRA0 e CRA1: Despacho nº 727/2018

-

²² Conforme redação da Portaria MME nº 248, de 2 de junho de 2015.

²³ Valor de usos usos consuntivos referente ao ano de 2024, obtido pela interpolação linear entre os valor definidos para os anos de 2018 e 2028 pela Portaria de Outorga AGERH-ES nº 96, de 18 de julho de 2016.

²⁴ Valor médio anual para a evaporação líquida média mensal.

7. Resultados Obtidos

CARGA CRÍTICA E BLOCO HIDRÁULICO

A carga crítica é a máxima oferta global de energia que pode ser atendida ao critério de otimização da expansão do sistema elétrico, assegurada pela igualdade entre os Custos Marginais de Operação – CMO e o Custo Marginal de Expansão – CME, limitados a um risco de déficit de 5%. Esta carga crítica é obtida por simulação estática da operação do sistema hidrotérmico, empregando-se o modelo NEWAVE, em sua versão 25.

A partir dos dados e das premissas apresentados para as duas configurações de referência, foram feitas simulações com o modelo NEWAVE de modo a obter a carga crítica que é atendida por cada uma das configurações hidrotérmicas.

A carga crítica, os valores médios de Custo Marginal de Operação (CMO) e de riscos anuais de déficit para cada subsistema e em cada configuração são detalhados a seguir.

Tabela 19 - Carga crítica e média dos CMO e riscos anuais de déficit

Média d	los Custos Ma	rginais de Opera	ção (R\$/MWh)
	SE	S	NE	N
CRA0	233,52	233,52	233,52	233,52
CRA1	234,07	234,08	234,07	234,07
N	1édia dos Risc	cos Anuais de Dé	ficit (%)	
	SE	S	NE	N
CRA0	0,44	0,35	0,00	0,10
CRA1	0,42	0,32	0,00	0,07
	Carga	Crítica (MWmed))	
	SE	S	NE	N
CRA0	51.241	14.411	14.033	8.034
CRA1	51.259	14.416	14.038	8.037
		CRA0	CRA1	
Carga Brasil		87.720	87.750	MWmed
Fator Hidráulico		75,03%	75,10%	
Bloco Hidráulico		53.957,5	54.032,2	MWmed
Bloco Térmico		17.955,5	17.911,1	MWmed

O montante de usinas não despachadas centralizadamente considerado em todas as configurações equivale a 15.807 MWmed.

ENERGIAS FIRMES E GARANTIAS FÍSICAS EM CADA CONFIGURAÇÃO

As energias firmes das UHEs Quebra Queixo, Jirau e Suíça foram obtidas em cada uma das configurações através de simulação com o modelo SUISHI em sua versão 13.0. A energia firme total do sistema hidráulico na CRAO resultou em 54.371,410 MWmed e na CRA1, 54.378,957 MWmed.

As garantias físicas foram obtidas em cada uma das configurações pela repartição do bloco hidráulico proporcionalmente às energias firmes obtidas em cada configuração. A garantia física nova é, então, obtida como a soma da garantia física vigente mais a diferença entre as garantias físicas obtidas nas duas configurações de referência.

Os valores de garantia física definidos nesta revisão extraordinária para as UHEs Quebra Queixo, Jirau e Suíça são discriminados a seguir:

Tabela 20 – Energias Firmes e Garantias Físicas – UHEs Quebra Queixo, Jirau e Suíça

Usina	Energia (MWn		Garantia Física (MWmed)		Δ Garantia – Física	Garantia Física Vigente	Garantia Física Nova
	CRA0	CRA1	CRA0	CRA1	_ 1 isica	(MWmed)	(MWmed)
Quebra Queixo	57,879	59,335	57,4	59,0	1,6	57,4	59,0
Jirau	2100,260	2103,796	2084,3	2090,4	6,1	2207,9	2214,0
Suíça	16,762	19,395	16,6	19,3	2,7	18,91	21,6

GARANTIAS FÍSICAS NO PERÍODO DE MODERNIZAÇÃO

Para a discretização da garantia física ao longo do processo de modernização de uma usina hidrelétrica será adotada a seguinte metodologia²⁵: a garantia física em cada etapa de modernização é a soma da garantia física vigente da UHE com o delta de garantia física da respectiva etapa de modernização.

Equação 2 – Garantia Física em cada etapa de modernização

$$GF_i = GF_{vigente} + \Delta GF_i$$

Onde

 GF_i é a garantia física na etapa de modernização i;

²⁵ Baseada no que estabelece a Portaria MME nº 101/2016 para o cálculo das garantias físicas ao longo da motorização de uma usina hidrelétrica.

 $GF_{vigente}$ é a garantia física vigente da usina hidrelétrica;

 ΔGF_i é o delta de garantia física vigente na etapa de modernização i,

Para se obter o delta de garantia física em cada etapa de modernização, calcula-se o produto da garantia física da etapa final (CRA1) pela razão entre a energia firme da respectiva etapa de modernização e a energia firme da etapa final, limitado pela potência disponível correspondente, e subtrai-se a garantia física obtida na CRA0.

Equação 3 - Delta de Garantia Física em cada etapa de modernização

$$\Delta GF_{i} = min\left\{\frac{EF_{i}}{EF_{CRA1}}GF_{CRA1}, P_{disp}\right\} - GF_{CRA0}$$

Onde

 ΔGF_i é o delta de garantia física vigente na etapa de modernização i;

 EF_i é a energia firme na etapa de modernização i;

 EF_{CRA1} é a energia firme obtida na CRA1;

 GF_{CRA1} é a garantia física obtida na CRA1;

P_{disp} é a potência disponível da usina hidrelétrica;

 GF_{CRA0} é a garantia física obtida na CRA0.

UHE QUEBRA QUEIXO

O projeto de modernização das unidades geradoras da UHE Quebra Queixo resultou num ganho de 7,56 MW de potência instalada e de 0,31 p.p. de rendimento médio do conjunto turbina-gerador. Considerando que as unidades geradoras contribuem com montantes iguais, tanto de rendimento médio quanto de potência instalada, os valores considerados no cálculo da garantia física referente à primeira etapa de modernização são apresentados na tabela a seguir.

Tabela 21 – UHE Quebra Queixo - Resumo dos parâmetros - Modernização

Parâmetros	CDAO	CRA1
Parametros	CRA0	(3 Unidades Modernizadas)
Potência Instalada (MW)	120,00	127,56
Rendimento médio do conjunto turbina-gerador	91,99%	92,30%

O valor de energia firme referente à primeira etapa de modernização é obtido alterando-se os valores da tabela acima na CRA1, com as eventuais atualizações de vazão efetiva e canal de

fuga médio. A tabela a seguir apresenta os valores de energia firme e garantia física para cada unidade modernizada da UHE Quebra Queixo.

Tabela 22 – UHE Quebra Queixo - Garantias Físicas no período de Modernização

Usina	Nº de Unidades Modernizadas	Potência (MW)	Rendimento Turbina- Gerador (%)	Energia Firme (MWmed)	Δ Garantia Física (MWmed)	Garantia Física Vigente (MWmed)	Garantia Física Nova (MWmed)
	1	122,520	92,1	58,366	0,6		58,0
Quebra Queixo	2	125,040	92,2	58,853	1,0	57,4	58,4
- Queino	3	127,560	92,3	59,335	1,6		59,0

7.1. Resultados obtidos – UHE Jirau – Condição de Santo Antônio conforme PBCA

Diante da atual condição temporária e provisória de operação do reservatório de Santo Antônio, de sua influência nos cálculos de garantia física da UHE Jirau e da possibilidade de que o licenciamento de Santo Antônio adeque-se às condições definidas no projeto (PBCA) aprovado condicionalmente pelo Despacho ANEEL 2.075/2013, foi elaborada uma configuração de referência adicional à luz do PBCA.

Nesta configuração adicional, a carga crítica, os valores médios de Custo Marginal de Operação (CMO) e de riscos anuais de déficit para cada subsistema e em cada configuração são detalhados a seguir:

Tabela 23 – Carga crítica e média dos CMO e riscos anuais de déficit

Média	Média dos Custos Marginais de Operação (R\$/MWh)									
	SE	S	NE	N						
CRA0	234,64	234,64	234,64	234,64						
CRA1	235,17	235,17	235,17	235,17						
	Média dos Risc	os Anuais de D	eficit (%)							
	SE	S	NE	N						
CRA0	0,33	0,28	0,00	0,07						
CRA1	0,35	0,28	0,00	0,03						
	Carga	Crítica (MWme	ed)							
	SE	S	NE	N						
CRA0	51.261	14.417	14.039	8.037						
CRA1	51.273	14.421	14.042	8.039						

	CRA0	CRA1	
Carga Brasil	87.755	87.775	MWmed
Fator Hidráulico	75,05%	75,06%	
Bloco Hidráulico	53.995,4	54.022,2	MWmed
Bloco Térmico	17.952,8	17.946,1	MWmed

O montante de usinas não despachadas centralizadamente considerado em todas as configurações equivale a 15.807 MWmed.

ENERGIAS FIRMES E GARANTIAS FÍSICAS EM CADA CONFIGURAÇÃO

Os valores de garantia física definidos nesta revisão extraordinária para as UHE Jirau são discriminados a seguir. A energia firme total do sistema hidráulico na CRAO resultou em 54.404,184 MWmed e na CRA1, 54.414,008 MWmed.

Tabela 24 – Energias Firmes e Garantias Física – UHEs Jirau – Condição de Santo Antônio conforme PBCA

Usina	Energia F (MWme		Garantia Física (MWmed)		Δ Garantia Física	Garantia Física Vigente	Garantia Física Nova
	CRA0	CRA1	CRA0	CRA1	_ 1.5.64	(MWmed)	(MWmed)
Jirau	2096,606	2102,578	2080,9	2087,4	6,5	2205,1	2211,6

8. Resumo dos Resultados

Para a UHE Suíça, houve um acréscimo de 2,7 MWmédios de garantia física referente à parcela de garantia física local, em virtude das alterações decorrentes da aprovação do Projeto Básico, conforme Despacho ANEEL nº 727/2018. A evolução da garantia física da UHE Suíça é apresentada na tabela a seguir.

Tabela 25 – Evolução da Garantia Física – UHE Suíça

Nº Unid	Potência Instalada (MW)	Garantia Física Local (MWmed)	Δ Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Total (MWmed)
2	30,060	18,91	-	0	18,91
2	35,337	18,91	2,7	0	21,6
		Unid Instalada (MW) 2 30,060	No Unid Instalada (MW) Física Local (MWmed) 2 30,060 18,91	Volumed No Instalada (MW) Instalada (MW) 2 30,060 18,91 -	Volumed Volumed Volume Volu

Para a UHE Quebra Queixo, houve um acréscimo de 1,6 MWmédios de garantia física referente à parcela de garantia física local, em virtude das alterações elencadas pela Nota Técnica nº 446/2018-SCG/ANEEL, contudo, a validação dos parâmetros pela ANEEL, mediante a

publicação de despacho, ocorrerá somente após a realização dos ensaios que comprovem efetivamente os valores ora solicitados pela Companhia Energética Chapecó (CEC). A evolução da garantia física da UHE Quebra Queixo é apresentada na tabela a seguir.

Tabela 26 – Evolução da Garantia Física – UHE Quebra Queixo

UHE Quebra Queixo	Nº Unid	Potência Instalada (MW)	Garantia Física Local (MWmed)	Δ Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Total (MWmed)
Contrato de Concessão ANEEL nº 94/2000	3	120,00	59,7	-	-	59,7
Revisão Ordinária	3	120,00	59,7	-2,3	-	57,4
Revisão Extraordinária	3	127,56	57,4	1,6	-	59,0

Adicionalmente, são apresentados os valores de garantia física da UHE Jirau ao longo do tempo.

Tabela 27 – UHE Jirau - Garantias Físicas Publicadas

UHE Jirau	Nº Unid.	Potência Total (MW)	Garantia Física (MWmed)	Acréscimo/ Decréscimo Revisão Extraordinária (MWmed)	Garantia Física Total (MWmed)	Portaria Nota Técnica
Cálculo Original Leilão	44	3.300,0	1.972,4+2,9	-	1.975,3	PRT MME nº 13/2008 NT EPE-DEE-RE-052-2008-r2
Revisão Extraordinária	50	3.750,00	1.975,3	209,3	2.184,6	PRT SPDE/MME nº 26/2011 NT EPE-DEE-RE-049-2011-r2
Revisão Extraordinária	50	3.750,00	2.184,6	20,5	2.205,1	PRT SPDE/MME nº 337/2015 NT EPE-DEE-RE-151-2015-r0
Cálculo Temporário Revisão Extraordinária	50	3.750,00	2,205,1	7,5	2.212,6	PRT SPDE/MME nº 222/2017 NT EPE-DEE-RE-033-2017-r0
Cálculo Vigente Revisão Extraordinária	50	3.750,00	2,212,6	-4,7	2.207,9	PRT MME nº 155/2018 NT EPE-DEE-RE-045-2018-r0

A seguir são reunidos os resultados obtidos no processo de revisão extraordinária de garantia física das usinas hidrelétricas Quebra Queixo, Jirau e Suíça.

Tabela 28 - Resumo dos Resultados

CEG	Usina	Nº Unid	Potência Instalada (MW)	Garantia Física Local (MWmed)	Δ Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Total (MWmed)
UHE.PH.SC.002167-9.01	Quebra Queixo	3	127,560	57,4*	1,6	-	59,0
UHE.PH.RO.029736-4.01	Jirau	50	3750,00	2205,0**	6,1	2,9	2214,0
UHE.PH.ES.002781-2.01	Suíça	2	35,337	18,91***	2,7	-	21,6

^{*}Conforme Portaria MME nº 178/2017.

^{**}Conforme Portaria SPDE/MME nº 155/2018 o montante de garantia física da UHE Jirau é de 2207,9 MW médios, sendo 2,9 MW médios referentes ao benefício indireto.

^{***} Conforme Portaria MME nº 519/2005.

A tabela abaixo apresenta os montantes de garantia física para a UHE Jirau, caso a UHE Santo Antônio obtenha licença para operar seu reservatório nas condições estabelecidas no Despacho ANEEL nº 2.075/2013.

Tabela 29 - Resumo dos Resultados - UHE Jirau - Condição de Santo Antônio conforme PBCA

CEG	. (MW) (MWmed)		Física Local	Δ Garantia Física Local (MWmed)	Benefício Indireto (MWmed)	Garantia Física Total (MWmed)	
UHE.PH.RO.029736-4.01	Jirau	50	3750,00	2202,2****	6,5	2,9	2211,6

^{****}Conforme Portaria SPDE/MME nº 337/2015 o montante de garantia física da UHE Jirau é de 2205,1 MW médios, sendo 2,9 MW médios referentes ao benefício indireto.

A tabela a seguir apresenta os valores garantia física para cada unidade modernizada da UHE Quebra Queixo.

Tabela 30 – Garantias Físicas – Período de Modernização

CEG	Usina	Nº Unid	Potência Instalada (MW)	Garantia Física Total (MWmed)	UG1 (MWmed)	UG2 (MWmed)	UG3 (MWmed)
UHE.PH.SC.002167-9.01	Quebra Queixo	3	127,560	59,0	58,0	58,4	59,0

Anexo 1 — Configuração Hidrotérmica de Referência

Tabela 34 – Configuração Hidrelétrica

Sudeste / Centro-Oes	te / Acre / Rondônia		
A. VERMELHA	DARDANELOS	JAURU	RETIRO BAIXO
A.A. LAYDNER	E. DA CUNHA	JIRAU	RONDON 2
A.S. LIMA	EMBORCACAO	JUPIA	ROSAL
A.S.OLIVEIRA	ESPORA	L.N. GARCEZ	ROSANA
AIMORES	ESTREITO	LAJEADO	SA CARVALHO
B. COQUEIROS	FONTES	LAJES	SALTO
BAGUARI	FOZ R. CLARO	M. DE MORAES	SALTO GRANDE
BARRA BONITA	FUNIL	MANSO	SAMUEL
BATALHA	FUNIL-GRANDE	MARIMBONDO	SANTA BRANCA
BILLINGS	FURNAS	MASCARENHAS	SAO DOMINGOS
CACH.DOURADA	GUAPORE	MIRANDA	SAO MANOEL
CACONDE	GUARAPIRANGA	NAVANHANDAVA	SAO SALVADOR
CACU	GUILMAN-AMOR	NILO PECANHA	SAO SIMAO
CAMARGOS	HENRY BORDEN	NOVA PONTE	SERRA FACAO
Cana Brava	I. SOLT. EQV	OURINHOS	SERRA MESA
CANDONGA	IBITINGA	P. COLOMBIA	SIMPLICIO
CANOAS I	IGARAPAVA	P. ESTRELA	SINOP
CANOAS II	ILHA POMBOS	P. PASSOS	SLT VERDINHO
CAPIM BRANC1	IRAPE	P. PRIMAVERA	SOBRAGI
CAPIM BRANC2	ITAIPU	PARAIBUNA	STA CLARA MG
CAPIVARA	ITIQUIRA I	PEIXE ANGIC	STO ANTONIO
CHAVANTES	ITIQUIRA II	PICADA	SUICA
COLIDER	ITUMBIARA	PIRAJU	TAQUARUCU
CORUMBA I	ITUTINGA	PONTE PEDRA	TELES PIRES
CORUMBA III	JAGUARA	PROMISSAO	TRES MARIAS
CORUMBA IV	JAGUARI	QUEIMADO	Volta Grande
Sul			
14 DE JULHO	G.B. MUNHOZ	MONJOLINHO	SANTA BRANCA
BAIXO IGUACU	G.P. SOUZA	MONTE CLARO	SAO JOSE
Barra Grande	GARIBALDI	PASSO FUNDO	SAO ROQUE
CAMPOS NOVOS	ITA	PASSO REAL	SEGREDO
CASTRO ALVES	ITAUBA	PASSO S JOAO	SLT.SANTIAGO
D. FRANCISCA	JACUI	QUEBRA QUEIX	STA CLARA PR
ERNESTINA	JORDAO	SALTO CAXIAS	TIBAGI MONT
FOZ CHAPECO	MACHADINHO	SALTO OSORIO	
FUNDAO	MAUA	SALTO PILAO	
Nordeste			V-11-0-0
B. ESPERANCA	ITAPARICA	P. CAVALO	XINGO
COMP PAF-MOX	ITAPEBI	SOBRADINHO	
Norte / Manaus / Belo		EEDDEIDA COM	TUCUDUIT
B.MONTE COMP	COARA NUNES	FERREIRA GOM	TUCURUI
BALBINA	CURUA-UNA	STO ANT JARI	
CACH CALDEIR	ESTREITO TOC	TUCURUI	

Tabela 35 – Configuração Termelétrica

Usina	Subsistema	Combustível	Potência Efetiva (MW)	Fcmax (%)	TEIF (%)	IP (%)	Disponibilidade máxima (Mwmed)	Inflexibilidade (Mwmed)	CVU (R\$/MWh)
ALTOS	NE	DIESEL	13.1	100	67.32	20.5	3.40	0	764.27
ANGRA 1	SE	NUCLEAR	640.0	100	4.7	16.07	511.91	509.8	31.17
ANGRA 2	SE	NUCLEAR	1350.0	100	1.91	7.38	1226.49	1080	20.12
ANGRA 3	SE	NUCLEAR	1405.0	100	2	6.84	1282.72	1282.7	25.58
APARECIDA	N	GAS	166.0	100	11.46	13.44	127.22	127.21	302.19
ARACATI	NE	DIESEL	11.5	100	71.21	23.43	2.54	0	764.27
ARAUCARIA	S	GAS	484.5	0	5.21	10.97	0.00	0	0
BAHIA I	NE	OLEO	31.0	98	9.09	4.94	26.25	0	991.87
BAIXADA FLU	SE	GAS	530.0	100	6.98	6.62	460.37	0	88.74
BATURITE	NE	DIESEL	11.5	100	65.31	23.4	3.06	0	764.27
C. ROCHA	N	GAS	85.4	100	1	20.72	67.03	67	0
CAMACARI MII	NE	DIESEL	143.1	100	3	1	137.42	0	1660.59
Camacari PI	NE	OLEO	150.0	100	26.54	1.02	109.07	0	1112.59
CAMBARA	S	BIOMASSA	50.0	100	2	2	48.02	20	162
CAMPINA GDE	NE	OLEO	169.1	100	26.31		106.85	0	643.25
CAMPO MAIOR	NE	DIESEL	13.1	100	70.46	22.81	2.99	0	764.27
CANDIOTA 3	S	CARVAO	350.0	91.4	26.77	20.75	185.65	185.65	81.54
CANOAS	S	DIESEL	248.6	100	2.17	3.32	235.13	0	698.14
CARIOBA	SE	OLEO	36.0	0	0	0	0.00	0	937
CAUCAIA	NE	DIESEL	14.8	100	67.3	24.41	3.66	0	764.27
CCBS	SE	GAS	216.0	100	4.68	4.26	197.12	86.4	314.68
Cisframa	S	BIOMASSA	4.0	90	3.5	6	3.27	0	291.97
CRATO	NE	DIESEL	13.1	100	70.67	22.18	2.99	0	764.27
CUIABA G CC	SE	GAS	529.2	0	10.65	23.96	0.00	0	511.77
DAIA	SE	DIESEL	44.4	85	20.25	18.04	24.67	0	884.58
DO ATLANTICO	SE	GAS PROCES	490.0	93	1.08	4.3	431.39	419.78	181.4
ELETROBOLT	SE	GAS PROCES	385.9	100	20.73	4.49	292.17	0	283.78
ENGUIA PECEM	NE	DIESEL	14.8	100	67.27	19.53	3.90	0	764.27
ERB CANDEIAS	NE NE	BIOMASSA	16.8	76.8	3	5	11.89	0	60
F.GASPARIAN	SE	GAS	572.1	65.5	10.35	9.26	304.83	0	548.04
FAFEN	NE	GAS	138.0	99.6	32.06	10.82	304.83 83.28	0	345.02
		GAS		99.0			0.00		
Fict_N	N		10.0	-	0	0		0	0
Fict_S	S	GAS	10.0	0	0	0	0.00	0	0
FIGUEIRA	S	CARVAO	20.0	90	43.72	14.3	8.68	5	475.68
FLORES LT1	N	DIESEL	40.0	0	0	0	0.00	0	868.35
FLORES LT2	N	DIESEL	40.0	0	0	0	0.00	0	883.17
FORTALEZA	NE	GAS	326.6	100	2.05	4.41	305.80	223	164.36
GERAMAR I	N	OLEO	165.9	96	0.87	3.33	152.62	0	643.23
GERAMAR II	N	OLEO	165.9	96	2.75	1.11	153.17	0	643.23
GLOBAL I	NE	OLEO	148.8	100	16.2	9.97	112.26	0	729.75
GLOBAL II	NE	OLEO	148.8	100	14.32	9.19	115.78	0	729.75
GNA P. ACU 3	SE	GAS	1673.0	100	2.5	2	1598.55	639.27	167.07
GOIANIA II	SE	DIESEL	140.3	100	37.94	28.5	62.26	0	921.85
IBIRITERMO	SE	GAS	226.0	100	7.22	8.61	191.63	0	346.37
IGARAPE	SE	OLEO	131.0	100	33.47	10.27	78.20	0	939.55
IGUATU	NE	DIESEL	14.8	100	70.7	21.76	3.39	0	764.27
IRANDUBA	N	OLEO	25.0	0	0	0	0.00	0	856.49
J.LACERDA A1	S	CARVAO	100.0	90		21.56	48.83	0	242.18
J.LACERDA A2	S	CARVAO	132.0	90.9	11.27	12.95	92.68	33	223.65

Usina	Subsistema	Combustível	Potência Efetiva (MW)	Fcmax (%)	TEIF (%)	IP (%)	Disponibilidade máxima (Mwmed)	Inflexibilidade (Mwmed)	CVU (R\$/MWh)
J.LACERDA B	S	CARVAO	262.0	91.6	12.41	19.67	168.86	120	217.06
J.LACERDA C	S	CARVAO	363.0	92.3	8.42	19.29	247.65	247.64	183.43
JARAQUI	N	GAS	75.5	87	4	0	63.06	62.98	0
JUAZEIRO N	NE	DIESEL	14.8	100	61.36	23.2	4.39	0	764.27
JUIZ DE FORA	SE	GAS	87.1	100	6.1	2.69	79.59	0	283.74
LINHARES	SE	GAS	204.0	100	3.4	1.32	194.46	0	225.15
MANAUARA	N	GAS	66.8	99.4	2.5	0.39	64.49	64.48	0
MARACANAU I	NE	OLEO	168.0	98	34.7	9.28	97.53	0	621.96
MARAMBAIA	NE	DIESEL	13.1	100	78.17	22.83	2.21	0	764.27
MARANHAO III	N	GAS	518.8	100	2.76	1.89	494.95	241.63	80.44
MARANHAO IV	N	GAS	337.6	100	3.13	4.91	310.98	0	139.07
MARANHAO V	N	GAS	337.6	100	2.58	4.83	313.00	0	139.07
MAUA 3	N	GAS	590.8	98.7	4.27	7.37	517.08	264	67.02
MAUA B3	N	GAS	110.0	0	7.05	6.96	0.00	0	411.92
MAUA B4	N	OLEO	150.0	0	56.03	6.99	0.00	0	575
Muricy	NE	OLEO	147.2	100	14.62	2.69	122.30	0	1112.59
N.VENECIA 2	N	GAS	178.2	100	6.17	6.36	156.57	0	217.98
NAZARIA	NE	DIESEL	13.1	100	73.81	22.45	2.66	0	764.27
NORTEFLU-1	SE	GAS	400.0	100	0	0	400.00	399.99	62.78
NORTEFLU-2	SE	GAS	100.0	100	7.77	5.62	87.05	0	72.47
NORTEFLU-3	SE	GAS	200.0	100	7.77	5.62	174.09	0	139.1
NORTEFLU-4	SE	GAS	126.8	100	7.77 7.77	5.62	110.38	0	357.66
NOVO TEMPO	NE	GAS	1299.0	100	2	2	1247.56	0	236.56
O. CANOAS 1	N	GAS	5.5	90	2	6.5	4.54	2.25	271.79
Onca Pintada	SE	BIOMASSA	50.0		3.19	5.48	43.46	6.86	91.45
				95					
P. PECEM I	NE	CARVAO	720.3	100	14.09	5.1	587.25	0	204.33
P. PECEM II	NE	CARVAO	365.0	100	3.66	5.52	332.23	0	212.26
P. SERGIPE I	NE	GAS	1516.0	100	1.1	2.05	1468.59	0	205.74
PALMEIRAS GO	SE	DIESEL	175.6	80	52.89	0.72	65.70	0	1063.99
PAMPA SUL	S	CARVAO	345.0	100	3.44	1.37	328.57	170	53.07
PARNAIBA IV	N	GAS	56.3	100	9.98	21.18	39.95	0	91.37
PARNAIBA5A5B	N	GAS	363.2	95	3	2	328.00	0	104.85
Pau Ferro I	NE	DIESEL	94.1	100	1.23	0.06	92.89	0	1532.65
PECEM II	NE	DIESEL	143.1	100	3	1	137.42	0	1677.85
PERNAMBU_III	NE	OLEO	200.8	100	46.67	6.18	100.47	0	548.56
PETROLINA	NE	OLEO	136.2	96.9	2.18	2.25	126.20	0	1220.68
PIRAT.12G	SE	GAS	200.0	0	6.57	12.08	0.00	0	470.34
PONTA NEGRA	N	GAS	66.0	100	2.5	0.53	64.01	64	0
PORTO ITAQUI	N	CARVAO	360.1	100	13.83	4.73	295.62	0	206.68
Potiguar	NE	DIESEL	53.1	100	9.82	8.47	43.83	0	1361.23
Potiguar III	NE	DIESEL	66.4	82.5	5.3	5.97	48.78	0	1361.22
Predilecta	SE	BIOMASSA	5.0	100	0.37	5	4.73	1	128.71
PROSPERIDADE	NE	GAS	28.0	100	3	4	26.07	0	155.43
R.SILVEIRA	SE	DIESEL	25.0	100	22.19	19.51	15.66	0	978.1
SANTANA LM	N	DIESEL	12.0	0	1.27	5.89	0.00	0	898.56
SANTANA W	N	DIESEL	12.0	0	37.63	4.71	0.00	0	640.96
SAO SEPE	S	BIOMASSA	8.0	90	2	3	6.84	0	73.47
ST.CRUZ 34	SE	OLEO	436.0	0	24.25	18.01	0.00	0	310.41
ST.CRUZ NOVA	SE	GAS	500.0	100	6.92	3.89	447.30	0	149.76
STA VITORIA	SE	BIOMASSA	41.4	93	1	16.2	31.94	0	90

Usina	Subsistema	Combustível	Potência Efetiva (MW)	Fcmax (%)	TEIF (%)	IP (%)	Disponibilidade máxima (Mwmed)	Inflexibilidade (Mwmed)	CVU (R\$/MWh)
SUAPE II	NE	OLEO	381.3	100	13.56	3.03	319.61	0	648.71
SUZANO MA	N	BIOMASSA	254.8	100	7.78	0.68	233.38	233.38	0
SYKUE I	NE	BIOMASSA	30.0	100	1.5	3	28.66	0	510.12
T.NORTE 2	SE	OLEO	340.0	0	3.28	3.78	0.00	0	910.86
TAMBAQUI	N	GAS	93.0	70.5	4	0	62.94	62.94	0
TERMOBAHIA	NE	GAS	185.9	85.5	4.49	10.59	135.73	0	280
TERMOCABO	NE	OLEO	49.7	100	7.36	9.05	41.88	0	635.51
TERMOCEARA	NE	GAS	223.0	100	29.93	16.76	130.07	0	322.63
TERMOIRAPE I	NE	BIOMASSA	50.0	100	0.5	4.5	47.51	0	127.01
TERMOMACAE	SE	GAS	928.7	100	9.79	1.7	823.54	0	513.88
Termomanaus	NE	DIESEL	143.0	100	2.97	0.14	138.56	0	1532.65
TERMONE	NE	OLEO	170.9	95	11.81	1.32	141.29	0	640.43
TERMOPB	NE	OLEO	170.9	95	13.76	1.12	138.45	0	640.43
TERMOPE	NE	GAS	532.8	100	9.08	11.81	427.21	312.01	132.07
TERMORIO	SE	GAS	1036.0	100	10.68	4	888.34	100.5	223.81
TRES LAGOAS	SE	GAS	350.0	100	13.88	4.62	287.49	0	187.8
URUGUAIANA	S	GAS	639.9	0	4.61	4.88	0.00	0	486.2
Vale Azul II	SE	GAS	466.3	100	5	5	420.84	210.42	85.01
VALE DO ACU	NE	GAS	367.9	84.3	5.26	6.5	274.73	0	280
VIANA	SE	OLEO	174.6	100	5.24	5.45	156.43	0	643.24
XAVANTES	SE	DIESEL	53.6	100	1.57	0.02	52.75	0	1269.99

Anexo 2 - Ficha de dados - UHE Jirau

	CRA0	CRA1
Potência instalada (MW)	3750,00	3750,00
Número de unidades geradoras	50	50
Hidrelétrica a jusante	Santo Antonio	Santo Antonio
Tipo de turbina	Bulbo	Bulbo
Rendimento médio do conjunto turbina-gerador(%)	93,4	93,7
Taxa de indisponibilidade forçada - TEIF (%)	0,500	0,500
Indisponibilidade programa - IP (%)	0,000	0,000
Interligação no Subsistema	Sudeste	Sudeste
Queda líquida de referência (m)	15,20	15,20
Perda Hidráulica média (m)	0,15	0,15
Canal de fuga médio (m)	73,19	73,19
Influência do vertimento no canal de fuga? (S/N)	S	S
Vazão efetiva (m³/s)	538	537
Vazão remanescente (m³/s)	40	40
Vazão mínima do histórico (m³/s)	1386	1386
Vazão mínima defluente (m³/s)	3240	3240

RESERVATÓRIO	CRA0	CRA1
Volume máximo (hm³)	2746,70	2746,70
Volume mínimo (hm³)	2746,70	2746,70
Volume de vertimento (hm³)	1249,80	1249,80
NA máximo normal (m)	90,00	90,00
NA mínimo normal (m)	90,00	90,00
Área máxima (km²)	302,60	302,60
Área mínima (km²)	302,60	302,60
Regulação (Diária/ Semanal/ Mensal)	Diária	Diária

EVAPORAÇÃO LÍQUIDA MÉDIA MENSAL (mm)

Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
-80	-67	-93	-81	-74	-29	11	41	-25	-82	-66	-81

VAZÕES DE USOS CONSUNTIVOS (m³/s)

.,				, -,								
Horizonte	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
2024	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49	-62,49

POLINÔMIOS

1 OLINOPIIOS					
	A0	A1	A2	A3	A4
PVC	6,6354790E+01	2,0687220E-02	-8,2828520E-06	1,9225440E-09	-1,8448350E-13
PCA	-7,8803840E+04	7,8803840E+04 2,9024610E+03		1,4685020E-01	0,0000000E+00
PVNJ	7,0500000E+01	6,6244655E-06	4,6535045E-09	-7,0618369E-14	3,6949953E-19
PVINJ	7,1263320E+01	3,1764138E-06	4,0662101E-09	-5,7741004E-14	2,9045799E-19

SÉRIE DE VAZÕES MÉDIAS MENSAIS

SÉRIE D	<u>DE VAZÕE</u>	S MÉDIA	S MENSA	IS								
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1931	29326	40733	45237	39335	30907	22488	15890	11862	7232	7960	12672	19561
1932	31038	36830	43480	41773	35592	26942	20024	11258	6207	6814	17454	26499
1933	34154	42637	45846	48882	36985	22832	11551	5971	4533	8537	8435	15313
1934	23002	35904	39094	39484	29748	21964	17055	8595	3322	4197	10672	32125
1935	39193	45354	44636	41091	23921	17607	12097	9448	6306	7159	9884	15368
1936	23846	28989	28199	24954	22502	20081	11755	6666	5428	5554	6182	15328
1937	31962	37828	47092	42726	26023	15169	11288	6489	5528	7030	9046	10879
1938	19011	28623	29431	26200	19364	10740	8254	4006	2623	3891	6389	9061
1939	15288	21513	27153	30424	19834	8360	3751	2316	1386	4274	6803	16249
1940	26087	30479	36684	33317	26040	21670	18041	17409	15586	8920	13083	19787
1941	20167	30508	47187	43407	35769	23731	14953	12113	10675	13412	16392	22326
1942	25589	38194	38374	38051	34320	30359	20100	12560	11600	12407	13452	13178
1943	17477	26695	34648	33414	28069	19891	12756	7710	5535	6836	15524	21212
1944	25894	34042	41773	37637	23331	15897	10714	7209	5662	6918	16284	17845
1945	23973	34370	38467	39416	28330	13790	6256	5389	6044	7996	13152	19557
1946	24498	29519	36432	36963	25558	20931	16152	11067	8306	9285	11096	21551
1947	29267	31923	34338	27730	20693	12594	7871	5640	4897	5672	12684	14935
1948	18062	23446	28343	30640	25716	19000	12577	7823	4722	4378	7051	13888
1949	20036	26950	32133	32500	26092	18724	12496	7889	4732	5199	9192	14286
1950	21771	28688	34782	34008	26884	18820	11352	6124	4076	5363	9884	15063
1951	21095	28186	32375	30710	24317	16992	10944	6587	5438	6709	10765	16184
1952	21909	29741	33585	31366	24915	17790	11495	7417	4792	5848	9045	14670
1953	20580	26012	29059	29065	23608	16797	10507	6011	3821	4948	8945	16334
1954	23460	29812	35884	35328	27362	18362	11053	5828	3337	3579	6486	11495
1955	16190	24247	30172	31537	25391	17409	10616	6181	3676	3694	6799	12393
1956	21425	29321	31034	28381	22287	15236	9807	6213	5035	6853	9927	15701
1957	20318	25506	29322	29619	24754	17573	11382	8127	6325	7905	11695	18125
1958	25775	30927	33250	32864	25441	17204	10420	6392	4067	6100	10617	17191
1959	25913	32980	35413	35001	27218	17959	10682	5857	3969	5114	8687	14627
1960	21858	28247	31492	31430	26612	18845	11401	6575	4682	5992	10172	15229
1961	18979	22680	26059	27311	24265	18058	11595	6455	3779	3974	8557	16335
1962	23669	29448	31249	30045	23725	16221	9434	5338	3486	4754	6671	11137
1963	189 4 7	26123	30813	305 4 6	23987	16 4 77	10324	5712	3216	36 4 7	5410	9009
1964	16427	22469	29428	32156	26989	18950	11742	6655	5007	8534	12759	17663
1965	24559	29644	31398	30542	23785	15642	9477	6030	3981	5291	8674	14349
1966	19716	24212	26289	26973	21701	17360	13039	8628	5536	6493	9349	12845
1967	18141	23325	28804	29552	16665	11883	6705	5093	3755	3993	7607	9802
1968		23906	32259	25419	13567	6969	4789	3676	4882	4842	7225	11681
1969		25162	25193	24251	15313	11986	7661	4885	4325	11015	6491	13452
1970	16456	22107	27832	27811	23355	17026	9681	5458	4809	4799	6115	9531
1971	18589	28774	32248	26233	17203	10126	7718	4702	4256	6466	8992	14684
1972	19619	26996	33975	33777	22676	16286	8826	7555	9751	10320	9593	19489
1973	23972	32787	37114	35877	27317	20430	13012	8773	6668	6781	12598	20257
1974	28916	34319	40427	34728	27833	18869	11788	7497	5338	5928	10501	13359
1975	21225	30310	35823	33337	24306	16678	12807	6769	4883	7586	8422	17591
1976		34658	37836	34469	26229	17763	9413	5280	4498	4796	8116	12537
1977		28490	38735	34913	28199	18950	12018	7496	5801	7450	12730	19166
1978	26394	32291	38857	33121	24724	17602	12525	5926	3746	4552	8120	20137
1979	29386	34938	36931	39989	32890	21229	11638	6378	5143	5258	6805	10959
1980	20112	25772	33619	34458	27471	22431	13419	8124	7192	8172	9040	12258
1981	17920	28108	35066	35036	28537	23383	11965	6097	4598	7028	12611	19532
1982	29562	36175	41549	44958	37602	26976	19291	10769	6751	12102	18141	22451
1983	25114	30287	34262	30555	29825	24011	20829	12930	6684	5638	8526	13067
1984	24814	33359	40526	46367	38887	26350	16236	8066	5377	5641	15031	20942
1985	28778	33523	34294	34921	32937	23344	14511	10430	7393	8681	12355	16260
1986	25096	34801	41274	43329	33916	26249	17230	11071	9136	10172	8845	17428
1987	25989	31021	27908	23720	22086	14044	8392	5804	4171	5203	10649	20722
1988	25599	31936	34514	39549	30861	21736	12984	6211	3835	4168	5723	9935

i	_								_	_		
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1989	21461	28340	31730	30860	23944	15379	10565	6095	5788	5104	6432	10188
1990	20927	277 4 6	28610	2 44 27	22273	18617	12642	6645	5356	6650	14903	19379
1991	27013	33652	35591	33686	25638	19589	12083	7898	6006	7081	10827	15900
1992	24946	26498	37480	35998	31866	24210	20007	10258	12420	15224	16504	22548
1993	30286	38659	42090	42923	32392	20016	11149	7597	6976	6820	12370	19096
1994	24803	32127	33266	33430	25445	15013	8858	5934	3597	5436	13398	20888
1995	25539	28515	35872	34335	24164	14794	8769	6995	3706	3723	5382	13587
1996	18816	27998	29308	31100	20538	14033	8527	4615	4650	6069	13732	17032
1997	24428	32103	42525	43548	33378	22958	13956	7966	4924	6712	9609	16922
1998	21412	23879	32941	33678	21324	12048	7199	4623	4334	6035	13734	20904
1999	26209	33 4 27	33787	32679	22329	14295	10195	5250	3682	4211	5818	13480
2000	19154	25267	305 4 2	27141	18824	13693	8725	5555	6246	4491	9648	15603
2001	23671	32339	40324	3 4 961	25244	17868	10447	6510	4402	5445	11322	16725
2002	22723	27488	35191	29459	22662	16744	9074	5637	4 637	5789	8554	15008
2003	21570	28690	32190	32446	21623	15100	8130	5019	3867	5920	7627	13885
2004	27615	30255	27686	27242	21486	13685	9032	6396	4297	4705	9085	15678
2005	22423	25315	29778	26491	16631	12886	7050	3568	2586	4092	8910	15810
2006	26195	35697	37069	36732	23834	14468	8832	5032	3512	5741	12292	18447
2007	25 4 88	29153	36413	38155	31956	20899	10710	6709	3753	5055	12360	20731
2008	29073	37415	40044	41562	3358 4	22553	12167	7888	5763	6586	9504	11510
2009	23106	26448	34951	36866	31142	22808	16587	10827	7098	8034	11626	20749
2010	278 4 8	33005	36282	32620	24507	12816	6492	4 317	3330	3309	5 4 86	9867
2011	18794	29408	3723 4	40883	28973	15539	8227	5683	3605	5171	5399	10884
2012	18859	27945	33310	28620	25209	19553	13755	6749	3907	5168	6728	14310
2013	23697	25840	33930	34097	21019	15502	12349	6603	5755	9135	17038	21736
2014	31220	45320	53777	47075	36645	27529	18974	9792	5636	5760	7956	16527
2015	29662	35900	40034	33250	34519	29097	20150	12126	6377	5320	8558	11024
2016	17548	24697	32370	27037	21112	12052	6426	3767	3355	3840	5819	9268
2017	19661	23402	32671	32060	26279	19720	10781	5752	4919	4246	9210	16969

Anexo 3 — Ficha de dados - UHE Jirau — PBCA de Santo Antônio

	CRA0	CRA1
Potência instalada (MW)	3750,00	3750,00
Número de unidades geradoras	50	50
Hidrelétrica a jusante	Santo Antonio	Santo Antonio
Tipo de turbina	Bulbo	Bulbo
Rendimento médio do conjunto turbina-gerador(%)	93,1	93,6
Taxa de indisponibilidade forçada - TEIF (%)	0,500	0,500
Indisponibilidade programa - IP (%)	0,000	0,000
Interligação no Subsistema	Sudeste	Sudeste
Queda líquida de referência (m)	15,20	15,20
Perda Hidráulica média (m)	0,15	0,15
Canal de fuga médio (m)	73,22	73,22
Influência do vertimento no canal de fuga? (S/N)	S	S
Vazão efetiva (m³/s)	540	537
Vazão remanescente (m³/s)	40	40
Vazão mínima do histórico (m³/s)	1386	1386
Vazão mínima defluente (m³/s)	3240	3240

Anexo 4 — Ficha de dados - UHE Quebra Queixo

	CRA0	CRA1
Potência instalada (MW)	120,000	127,560
Número de unidades geradoras	3	3
Hidrelétrica a jusante	0,00	0,00
Tipo de turbina	Francis	Francis
Rendimento médio do conjunto turbina-gerador(%)	91,99	92,30
Taxa de indisponibilidade forçada - TEIF (%)	1,982	1,982
Indisponibilidade programa - IP (%)	5,292	5,292
Interligação no Subsistema	Sul	Sul
Queda líquida de referência (m)	117,70	117,70
Perda Hidráulica média (m)	4,15	4,15
Canal de fuga médio (m)	426,64	426,65
Influência do vertimento no canal de fuga? (S/N)	S	S
Vazão efetiva (m³/s)	38	40
Vazão remanescente (m³/s)	-	-
Vazão mínima do histórico (m³/s)	3	3
Vazão mínima defluente (m³/s)	15	15

RESERVATÓRIO	CRA0	CRA1
Volume máximo (hm³)	137,00	137,00
Volume mínimo (hm³)	111,00	111,00
Volume de vertimento (hm³)	111,00	111,00
NA máximo normal (m)	549,00	549,00
NA mínimo normal (m)	544,00	544,00
Área máxima (km²)	5,18	5,18
Área mínima (km²)	4,16	4,16
Regulação (Diária/ Semanal/ Mensal)	Mensal	Mensal

EVAPORAÇÃO LÍQUIDA MÉDIA MENSAL (mm)

	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
ĺ	11	32	58	78	78	65	49	34	14	-14	-18	-10

VAZÕES DE USOS CONSUNTIVOS (m³/s)

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
2024	0,15	0,15	0,14	0,13	0,13	0.13	0.13	0.14	0.14	0.15	0.16	0.16

POLINÔMIOS

	A0	A1	A2	A3	A4
PVC	5,0394480E+02	5,4132900E-01	-1,9686900E-03	3,0855200E-06	0,0000000E+00
PCA	-2,8922000E+04	1,6280300E+02	-3,0561400E-01	1,9133900E-04	0,0000000E+00
PVNJ	4,2601780E+02	8,2688590E-03	-2,4096490E-05	3,4937400E-08	-1,8062090E-11

SÉRIE DE VAZÕES MÉDIAS MENSAIS

SEKIE	DE VAZU	JES MED	TAS MEN	IDAID								
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1931	43	11	16	14	140	115	110	58	151	55	27	23
1932	31	52	65	208	186	142	106	58	137	119	37	38
1933	18	16	17	11	17	25	25	51	70	138	59	19
1934	41	76	47	71	69	47	37	70	70	58	25	40
1935	22	12	16	10	8	37	98	123	146	241	51	105
1936	47	23	26	18	63	210	118	135	98	104	45	27
1937	24	25	55	43	24	15	32	62	85	80	70	32
1938	78	119	32	61	138	139	132	44	30	29	36	16
1939	25	31	77	53	124	88	84	37	109	65	125	155
1940	90	45	26	133	55	23	26	40	21	34	25	72
1941	72	163	107	51	89	99	61	205	78	87	131	104
1942	29	132	119	130	140	38	60	69	53	41	12	10
1943	6	21	12	7	87	227	105	182	130	80	32	11
1944	68	22	25	12	6	4	12	4	7	9	20	7
1945	4	21	12	6	10	14	27	15	33	21	26	21
1946	71	185	94	59	24	132	157	36	31	121	38	47
1947	60	106	31	11	13	106	50	78	152	66	30	34
1948	20	58	47	44	152	41	50	186	25	88	48	12
1949	21	5	14	23	20	61	19	41	44	39	28	12
1950	59	35	49	20	35	17	24	66	77	192	56	44
1950	39	96	69	16	8	10	29	6	6	290	133	40
1951	7	5	4	5	3	51	78	23	117	290	79	25
1952	51	78	25	27	31	45	54	43	127	152	112	62
1954	64	46	74	60	117	243	197	104	241	279	33	63
1955	37	18	32	94	135	197	178	88	54	32	18	16
1956	39	37	14	80	95	47	63	73	161	51	14	12
1957	18	51	34	19	21	49	171	384	225	54	31	26
1958	19	13	65	30	12	37	25	76	161	100	88	129
1959	70	46	26	40	52	48	35	55	67	44	31	23
1960	15	20	13	14	21	44	23	111	97	140	103	37
1961	28	32	209	68	82	49	23	17	176	204	110	49
1962	32	73	40	23	79	56	55	36	102	112	63	29
1963	39	67	83	47	43	25	18	20	32	168	182	68
1964	28	43	34	59	92	37	54	91	73	43	37	24
1965	21	24	15	20	90	61	142	119	150	265	102	191
1966	71	324	116	37	18	64	70	68	125	195	70	95
1967	44	68	95	27	17	27	37	105	108	65	73	70
1968	25	14	13	22	29	26	42	23	23	38	71	49
1969	114	69	58	102	93	168	97	58	78	107	103	41
1970	53	46	42	33	59	120	145	57	70	101	38	191
1971	185	83	79	151	144	204	166	76	56	76	24	22
1972	45	64	67	67	30	130	65	244	249	126	55	60
1973	89	152	99	46	142	158	119	199	185	143	103	47
1974	72	73	61	52	61	103	60	37	97	40	74	49
1975	82	83	46	29	24	52	57	80	148	191	100	145
1976	98	61	38	37	70	115	61	95	73	75	107	40
1976	33	37	84	48	21	54	49	93	67	101	107	44
1977		13	15	7	7	14			63		76	52
	20						85	41		32		
1979	24	11	21	59	248	76	77	86	69	241	156	74
1980	58	39	86	37	57	33	83	125	112	57	80	101
1981	71	76	49	38	39	54	29	24	33	58	99	145
1982	44	53	39	18	23	121	250	91	58	181	387	117
1983	99	95	242	138	367	209	621	156	118	110	107	43
1984	43	54	39	53	66	149	57	184	105	75	77	37
1985	26	72	36	56	47	29	43	30	63	47	67	25
1986	30	72	38	79	80	88	34	44	74	90	49	37
1987	55	65	25	39	311	123	72	72	51	111	56	28
1988	24	24	16	38	263	150	61	28	24	70	45	37

	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1989	80	142	83	72	101	53	91	95	287	138	75	46
1990	164	83	62	152	146	398	132	158	177	157	124	128
1991	71	71	50	55	51	165	106	122	69	137	98	87
1992	86	100	115	103	294	210	279	181	151	128	127	79
1993	91	76	61	52	139	133	94	70	97	204	64	65
1994	31	88	53	53	115	160	176	73	71	117	190	97
1995	198	79	62	78	50	123	88	46	80	125	45	29
1996	49	114	103	87	29	93	157	104	158	271	98	98
1997	64	225	99	43	59	163	157	192	73	331	350	83
1998	134	214	147	363	177	66	126	297	217	184	62	50
1999	55	66	36	74	32	91	139	32	41	201	47	30
2000	66	62	57	39	67	47	104	66	254	259	76	44
2001	84	176	95	126	108	116	113	62	48	232	56	62
2002	28	28	27	20	71	80	49	113	126	210	177	141
2003	75	69	81	38	27	46	37	28	21	42	91	199
2004	80	31	14	20	56	53	98	34	46	133	145	59
2005	71	30	14	48	106	189	69	44	208	242	88	28
2006	24	23	37	33	15	11	12	36	52	45	60	58
2007	52	38	65	103	257	69	87	44	53	116	182	81
2008	44	21	15	51	84	75	47	55	41	153	187	51
2009	41	34	28	13	30	59	92	182	182	202	115	103
2010	82	65	70	203	185	100	83	81	27	33	29	187
2011	90	133	104	115	40	96	205	185	228	75	66	32
2012	22	32	28	15	40	71	55	75	18	39	76	40
2013	97	49	146	95	66	172	115	126	141	114	72	65
2014	68	26	61	49	146	294	162	66	109	195	56	47
2015	132	73	52	41	73	167	237	66	80	224	159	203
2016	91	116	125	66	113	80	56	105	71	73	48	53
2017	88	45	51	24	72	182	31	36	17	104	150	53

Anexo 5 — Ficha de dados - UHE Suíça

	CRA0	CRA1
Potência instalada (MW)	30,060	35,337
Número de unidades geradoras	2	2
Hidrelétrica a jusante	Não	Não
Tipo de turbina	Francis	Francis
Rendimento médio do conjunto turbina-gerador(%)	78,15	89,65
Taxa de indisponibilidade forçada - TEIF (%)	2,068	2,068
Indisponibilidade programa - IP (%)	4,660	4,660
Interligação no Subsistema	Sudeste	Sudeste
Queda líquida de referência (m)	240,00	232,87
Perda Hidráulica média (m)	10,00	10,04
Canal de fuga médio (m)	100,00	99,87
Influência do vertimento no canal de fuga? (S/N)	N	N
Vazão efetiva (m³/s)	8	8
Vazão remanescente (m³/s)	0	0
Vazão mínima do histórico (m³/s)	2	2
Vazão mínima defluente (m³/s)	4	4

RESERVATÓRIO	CRA0	CRA1
Volume máximo (hm³)	0,35	0,35
Volume mínimo (hm³)	0,09	0,09
Volume de vertimento (hm³)	0,00	0,00
NA máximo normal (m)	350,00	350,00
NA mínimo normal (m)	346,50	346,50
Área máxima (km²)	0,08	0,08
Área mínima (km²)	0,05	0,05
Regulação (Diária/ Semanal/ Mensal)	Diária	Diária

EVAPORAÇÃO LÍQUIDA MÉDIA MENSAL (mm)

Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
167	156	164	117	116	89	94	94	115	141	141	151

VAZÕES DE USOS CONSUNTIVOS (m³/s)

- 1													
	Horizonte	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
	2024	1,99	1,99	1,99	1,99	1,99	1.99	1.99	1.99	1.99	1.99	1.99	1.99

POLINÔMIOS

PVNJ -CRA1	9,9425159E+01	1,4388388E-01	-2,4090504E-02	1,9210793E-03	-5,3527689E-05
PVNJ -CRA0	1,000000E+02	0,000000E+00	0,000000E+00	0,000000E+00	0,000000E+00
PCA	5,2822911E+05	-6,0756211E+03	2,6203952E+01	-5,0227040E-02	3,6100860E-05
PVC	3,4512408E+02	1,4522664E+01	2,7701980E+00	3,5484669E+00	-4,7766201E+01
	A0	A1	A2	A3	A4

SÉRIE DE VAZÕES MÉDIAS MENSAIS

SEKIE	DE VAZ	ノころ ドリヒレ	IAS MEN	ADATO								
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1931	13	12	14	11	9	7	8	9	10	12	19	17
1932	28	15	14	11	12	11	10	8	6	7	12	14
1933	29	19	18	28	27	16	14	11	8	9	13	18
1934	18	15	16	16	12	11	10	8	8	9	12	11
1935	23	28	18	18	13	10	9	8	6	7	9	14
1936	9	17	16	10	8	17	11	7	8	12	13	16
1937	20	25	17	56	25	14	14	11	9	9	17	29
1938	18	12	10	13	10	13	9	9	7	8	18	21
1939	21	15	10	10	7	7	6	5	6	5	5	10
1940	9	10	18	12	14	13	8	7	7	8	12	9
1941	11	13	17	17	13	10	10	8	9	10	10	15
									7		17	
1942	30	17	14	13	10	9	9	10		9		50
1943	36	32	31	21	17	15	13	11	12	15	16	32
1944	21	16	16	14	14	12	11	11	5	8	10	24
1945	29	20	22	29	19	14	12	11	12	11	17	26
1946	20	13	15	20	16	12	10	10	8	10	12	12
1947	9	9	12	11	11	8	8	7	7	17	22	34
1948	20	16	16	13	14	11	10	8	7	8	12	35
1949	32	34	26	26	18	17	14	12	10	13	21	42
1950	26	17	16	14	11	10	9	7	7	7	15	29
									7			
1951	15	19	25	16	11	15	10	11		7	6	15
1952	35	26	27	15	11	10	11	11	10	7	31	40
1953	19	22	14	14	10	8	8	7	7	6	19	37
1954	20	11	9	14	9	8	7	6	7	6	7	9
1955	11	8	6	8	7	5	5	4	4	6	21	18
1956	11	7	11	6	6	7	6	6	6	9	17	49
1957	35	17	20	20	15	15	11	8	7	7	14	30
1958	17	15	11	17	13	9	10	8	9	11	12	11
1959	12	8	13	7	7	5	5	5	6	8	14	29
		33	75	30	19	15	14	12	11		15	
1960	55									10		14
1961	48	30	15	13	13	11	10	8	6	7	7	8
1962	19	15	9	6	6	6	6	4	4	7	9	17
1963	14	8	6	6	5	4	4	4	3	3	5	3
1964	13	11	10	13	6	5	7	6	5	13	12	15
1965	23	26	15	12	9	8	8	6	5	7	22	10
1966	17	8	5	5	5	5	5	4	4	7	16	12
1967	8	10	11	10	9	6	5	4	4	4	8	19
1968	18	15	23	12	8	7	7	6	9	9	8	11
		12	9	7		7	5			5	9	
1969	10				5			4	4			21
1970	32	20	10	9	7	6	7	9	8	11	28	24
1971	11	9	10	8	7	7	7	6	7	11	34	32
1972	15	16	13	11	10	9	9	8	9	10	19	28
1973	14	12	29	18	12	10	9	8	7	12	12	16
1974	23	17	17	14	11	9	9	7	7	11	13	16
1975	32	27	18	13	11	10	9	8	7	12	17	12
1976	7	7	5	6	6	4	5	4	5	7	20	30
1977	21	12	9	9	8	7	6	4	5	8	13	16
1978	21	17	16	18	14	10	13	9	8	10	9	15
1979	47	93	52	34	22	18	16	14	13	13	26	29
1980	54	27	18	29	18	15	13	12	10	10	11	32
1981	18	14	21	22	14	13	11	11	9	13	43	26
1982	32	17	25	21	16	13	12	12	10	9	8	10
1983	28	24	12	11	9	8	8	6	9	14	26	28
1984	18	12	12	12	9	7	6	7	8	11	16	56
1985	100	52	33	14	17	13	11	12	11	14	14	22
1986	25	14	9	8	8	7	7	7	6	5	6	11
1987		8	17	13	8	7	6	6	5	5	9	
	11											18
1988	22	10	12	7	6	5	5	4	4	7	9	10

	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1989	7	6	10	7	6	6	5	5	4	4	9	27
1990	10	7	7	6	5	4	4	4	5	7	8	12
1991	27	15	24	13	10	8	8	9	8	6	11	10
1992	16	16	10	9	7	6	8	6	6	8	38	22
1993	16	9	7	10	7	6	5	5	4	5	5	11
1994	39	10	23	15	12	9	7	6	5	5	7	12
1995	7	5	5	7	5	5	5	5	4	6	13	28
1996	20	7	7	6	5	5	4	4	5	9	38	21
1997	22	13	69	20	14	10	8	7	7	8	10	21
1998	14	10	9	8	7	7	6	7	5	8	14	16
1999	15	6	12	9	7	6	7	6	7	8	17	18
2000	16	14	12	11	8	8	7	6	7	5	15	35
2001	13	8	8	6	6	6	5	6	7	11	38	28
2002	33	17	11	10	10	8	8	8	11	8	11	16
2003	35	11	10	10	8	6	6	6	5	4	5	8
2004	20	19	19	15	11	11	9	8	6	6	7	19
2005	18	42	41	18	20	28	17	12	11	10	20	32
2006	18	9	27	15	10	10	9	8	9	12	22	26
2007	34	28	17	15	11	10	9	7	9	6	12	10
2008	8	12	18	13	9	7	6	4	4	6	27	31
2009	45	19	15	21	13	15	12	10	7	14	20	26
2010	19	13	17	17	17	17	16	12	11	10	27	23
2011	36	17	34	28	20	15	15	10	10	13	19	39
2012	47	24	15	13	14	14	11	25	14	12	22	28
2013	15	18	17	20	14	13	13	12	11	11	15	83
2014	29	18	10	15	9	8	9	11	6	6	8	12
2015	3	3	3	2	6	5	4	4	3	3	3	4
2016	7	7	4	3	3	3	3	3	3	2	9	9
2017	23	17	17	14	11	10	9	8	7	9	15	22