

ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

Definição de Parâmetros Indicativos para o Planejamento de Linhas de Transmissão Subterrâneas e Subaquáticas em Corrente Alternada

GOVERNO FEDERAL MINISTÉRIO DE MINAS E ENERGIA

Ministério de Minas e Energia **Ministro**

Bento Costa Lima Leite de Albuquerque Júnior

Secretário-Executivo do MME

Marisete Fátima Dadald Pereira

Secretário de Planejamento e Desenvolvimento **Energético**

Paulo César Magalhães Domingues

Secretário de Energia Elétrica

Christiano Vieira da Silva

Secretário de Petróleo, Gás Natural e Combustíveis Renováveis

José Mauro Ferreira Coelho

Secretário de Geologia, Mineração e Transformação Mineral

Alexandre Vidigal de Oliveira

ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

Definição de parâmetros indicativos para o planejamento de linhas de transmissão subterrâneas subaquáticas em corrente alternada

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei nº 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente

Thiago Vasconcellos Barral Ferreira

Diretor de Estudos Econômico-Energéticos e **Ambientais**

Giovani Vitória Machado

Diretor de Estudos de Energia Elétrica Erik Eduardo Rego

Diretor de Estudos de Petróleo, Gás e **Biocombustíveis**

Heloisa Borges Bastos Esteves

Diretor de Gestão Corporativa

Ângela Regina Livino de Carvalho

URL: http://www.epe.gov.br

Esplanada dos Ministérios, Bloco "U", sala 744 70065-900 - Brasília - DF **Escritório Central**

Praça Pio X, nº 54 20091-040 - Rio de Janeiro - RJ Coordenação Geral

Thiago Vasconcellos Barral Ferreira Erik Eduardo Rego

Coordenação Executiva

José Marcos Bressane

Coordenação Técnica

Daniel José Tavares de Sousa

Equipe Técnica

Bruno Scarpa Alves da Silveira Dourival de Souza Carvalho Junior Fabiano Schmidt Gabriel Santiago Silva de Souza Sérgio Felipe Falcão Lima

Projeto Gráfico e Capa

Assessoria de Comunicação EPE Fotografias cedidas pela ISA CTEEP

Nº EPE-DEE-NT-84/2021-rev0

Data: 24/09/2021

Contrato

Data de assinatura

Projeto

ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

Área de estudo

Estudos do Sistema de Transmissão

Sub-área de estudo

Grupo de trabalho de engenharia e custos

Produto (Nota Técnica ou Relatório)

EPE-DEE-NT-84/2021-


rev0

Definição de parâmetros indicativos para o planejamento de linhas de

transmissão subterrâneas e subaquáticas em corrente alternada

Revisões <u>Data</u> <u>Descrição sucinta</u>

rev0 24/09/2021 Emissão Original

APRESENTAÇÃO

Esta Nota Técnica apresenta parâmetros elétricos unitários e ampacidades indicativos (preliminares) para linhas de transmissão subterrâneas e subaquáticas, em corrente alternada, para os níveis de tensão em 230, 345 e 500 kV.

Sumário

Apres	entação	7
Sumá	rio	8
Índice	e de Figuras	9
Índice	e de Tabelas	9
1	Introdução	10
1.1	Objetivo	12
1.2	Destaques desta Nota Técnica	12
1.3	Resultados	12
2	CARACTERÍSTICAS BÁSICAS DE CABOS ISOLADOS, PREMISSAS E CRITÉRIO	S 13
2.1	Características básicas de cabos isolados	13
2.2	Premissas e critérios para subsidiar a elaboração de soluções típicas de LTS	21
2.2	Premissas e condicionantes ambientais	21
2.2	2.2 Premissas para escolha das configurações de instalação (valas ou ambiente marin	ho) . 21
2.2	2.3 Critérios para o dimensionamento das ampacidades do conjunto de soluções	25
2.2	2.4 Programa computacional	25
3	O ATUAL PANORAMA DAS LTS NA REDE BÁSICA	26
4	PARÂMETROS ELÉTRICOS E AMPACIDADES PARA LTS	28
4.1	Introdução	28
4.2	LT Subterrâneas	28
4.2	2.1 LT Subterrâneas em 230 kV	28
4.2	2.2 LT Subterrâneas em 345 kV	30
4.2	2.3 LT Subterrâneas em 500 kV	31
4.3	LT Subaquáticas	32
4.3	3.1 LT Subaquáticas em 230 kV	33
4.3	3.2 LT Subaquáticas em 345 kV	34
4.3	3.3 LT Subaquáticas em 500 kV	35
5	REFERÊNCIAS	36
ANEX	O A	37
ANFY	∩ B	41

ÍNDICE DE FIGURAS

Figura 2®-1 Cabo monopolar subterrâneo típico utilizado	14
Figura 2-2 Al 1000 mm² 230 kV Subterrâneo. Fonte: [5]	18
Figura 2-3 Disposição geométrica dos cabos da Figura 2-2 – Circuito simples. Fonte: [5]	18
Figura 2-4 Al 2000mm ² 345 kV Subterrâneo. Fonte: [5]	19
Figura 2-5 Disposição geométrica dos cabos da Figura 2-4 – Circuito duplo. Fonte: [5]	19
Figura 2-6 Al 1600 mm² 230 kV Subaquático. Fonte: [5]	20
Figura 2-7 Disposição geométrica dos cabos subaquáticos da Figura 2-6 - Circuito duplo (praia). Fonte: [5] .	20
Figura 2-8 Exemplos de arranjos típicos para LT subterrâneas	22
Figura 2-9 Exemplos de arranjos típicos para LT subaquáticas - praia	23
Figura 2-10 Exemplos de arranjos típicos para LT subaquáticas — leito marinho	24
Figura 3-1 Distribuição de LTS no Brasil considerando a extensão por ano e região em km/circuito	26
Figura 3-2 Extensão das LTS por ano e tipo em km/circuito	26
Figura 3-3 Comprimento discretizado por LTS e ano de entrada em operação ou previsto	27
ÍNDICE DE TABELAS	
Tabela 2-1 Descrição das camadas de um cabo monopolar subterrâneo típico	14
Tabela 4-1 Parâmetros elétricos e ampacidades para cabos subterrâneos de nível de tensão 230 kV	29
Tabela 4-2 Parâmetros elétricos e ampacidades para cabos subterrâneos de nível de tensão 345 kV	
Tabela 4-3 Parâmetros elétricos e ampacidades para cabos subterrâneos de nível de tensão 500 kV	31
Tabela 4-4 Parâmetros elétricos e ampacidades para cabos subaquáticos de nível de tensão 230 kV	33
Tabela 4-5 Parâmetros elétricos e ampacidades para cabos subaquáticos de nível de tensão 345 kV	34
Tabela 4-6 Parâmetros elétricos e ampacidades para cabos subaquáticos de nível de tensão 500 kV	35
Tabela A-1 Dimensões dos cabos subterrâneos de nível de tensão 230 kV	37
Tabela A-2 Dimensões dos cabos subterrâneos de nível de tensão 345 kV	38
Tabela A-3 Dimensões dos cabos subterrâneos de nível de tensão 500 kV	38
Tabela A-4 Dimensões dos cabos subaquáticos de nível de tensão 230 kV	39
Tabela A-5 Dimensões dos cabos subaquáticos de nível de tensão 345 kV	40
Tabela A-6 Dimensões dos cabos subaquáticos de nível de tensão 500 kV	40

1 INTRODUÇÃO

As Linhas de Transmissão Subterrâneas e Subaquáticas (LTS) têm se apresentado como alternativa necessária para a expansão da transmissão em algumas situações, como, por exemplo, regiões urbanas de grande densidade populacional, áreas de proteção ambiental, travessias aquáticas, entre outras situações, nas quais a implantação de Linhas de Transmissão Aéreas (LTA) é sobremaneira mais complexa. Portanto, soluções considerando cabos isolados têm sido cada vez mais recomendadas pelo planejamento. De fato, o atendimento à carga em algumas cidades e regiões, não se restringindo apenas às maiores metrópoles, só tem sido viabilizado através de soluções que incluem trechos de linhas ou mesmo linhas completas, subterrâneas e/ou subaquáticas.

Nesse contexto, a avaliação técnica de LTS tornou-se um novo desafio no âmbito do planejamento, tendo em vista que até recentemente no Brasil a sua aplicação estava majoritariamente restrita às redes de distribuição, especialmente considerando a dificuldade de obtenção preliminar de dados para os estudos de planejamento, seja do ponto de vista de obtenção de dados elétricos e ambientais, seja na escolha de configurações típicas.

Para se ter uma ideia da crescente importância desse tipo de instalação a nível de Rede Básica (RB), cerca de 70 km de circuitos de LTS já entraram em operação até agosto/2021, enquanto cerca 240 km circuitos já foram outorgados ou estão em fase de implantação, e cerca de 50 km estão em fase de estudo.

Diante dessa situação, a equipe da Superintendência de Transmissão de Energia (STE) da Empresa de Pesquisa Energética (EPE) vem envidando esforços para atender suas necessidades de concepção de soluções de referência para o planejamento de LTS, como é o caso do projeto, em desenvolvimento, intitulado "Estimativa de Custos de Linhas de Transmissão Subterrâneas e/ou Subaquáticas (LTS)¹". Esse projeto surgiu a partir da necessidade de se estabelecer custos mais aderentes para a análise econômica de diferentes alternativas, uma vez que os custos associados à implantação de soluções que envolvem LTS são elevados, em comparação às LTA. Portanto, essas soluções são sempre encaradas com o devido cuidado.

Além disso, a experiência adquirida em anos recentes, além de diversas informações recebidas por meio de interações com agentes do setor elétrico e também com o Operador Nacional do Sistema Elétrico (ONS), têm permitido o aprimoramento das metodologias de cálculo térmico e elétrico, considerando situações mais realistas e aderentes ao que efetivamente é adotado nas melhores práticas internacionais.

Como em outras situações práticas, para grande parte das soluções pertinentes a Linhas de Transmissão (LT) com cabos isolados, as indicações de referência do planejamento englobam um conjunto limitado de configurações, como a quantidade de circuitos na mesma vala e disposições físicas

¹ https://www.epe.gov.br/pt/acesso-a-informacao/licitacoes-e-contratos/li-epe-002-2020

dos cabos no solo. Sendo assim, resultados previamente processados e ordenados poderão contribuir no sentido de agilizar o trabalho dos diferentes grupos de trabalho da STE, quando envolvidos com a concepção dessas LTS, além de outros potenciais interessados.

Essa ideia foi primeiramente abordada na Nota Técnica EPE-DEE-NT-004/2017-rev0 [1], em fevereiro de 2017. Por outro lado, observou-se a necessidade de evolução da metodologia de dimensionamento de LTS utilizada no planejamento da expansão. Por exemplo, na referida Nota Técnica (NT) a metodologia considerava apenas 01 (uma) ampacidade no dimensionamento de LTS, considerando os mesmos valores para longa e curta duração, tendo como critério a máxima temperatura de 90 °C. Foi constatado que essa metodologia ocasionava, em alguns casos, seções não econômicas no limite da tecnologia, e até inviáveis. No caso desta NT, o dimensionamento é feito baseado em nova metodologia que considera diferenciações nas capacidades de longa e curta duração, conforme explicitado no item 2.2.3.

Adicionalmente, observou-se a necessidade de inclusão de soluções contendo LT subaquáticas, entre outros aspectos de aprimoramento, relatados no item 1.2.

Por fim, a presente NT está organizada da seguinte forma:

- No capítulo 2 são apresentadas as características básicas mais usuais de LT subterrâneas, com um breve histórico da evolução das LT com cabos isolados a óleo para os cabos típicos atualmente utilizados, os condicionantes ambientais mais comumente utilizados na fase de planejamento e a definição de capacidade de transmissão dessas LT.
- No capítulo 3 é apresentado sumariamente um panorama geral da evolução da RB do Sistema Interligado Nacional (SIN), com ênfase em concepções que envolvem cabos isolados.
- No capítulo 4, para as tensões de 230 kV, 345 kV e 500 kV, são apresentados um conjunto de parâmetros de LT subterrâneas, para diferentes configurações típicas de instalação dos cabos, seções nominais, materiais condutores e quantidade de circuitos.
- No capítulo 5, para as tensões de 230 kV, 345 kV e 500 kV, são apresentados um conjunto de parâmetros de LT subaquáticas, para configurações expeditas de soluções que envolvem cabos subaquáticos, considerando configuração horizontal de cabos enterrados em praias ou no leito marinho, e diferentes seções nominais, materiais condutores e quantidade de circuitos.

Os parâmetros elétricos e ampacidades apresentadas nos capítulos 4 e 5 podem ser utilizados pelas equipes de planejamento para as escolhas iniciais de soluções em LTS. Ressalta-se que, em função das particularidades de cada estudo, deve-se buscar refinar, nas etapas de detalhamento, as características da solução de referência eventualmente recomendada.

1.1 Objetivo

O objetivo principal desta NT é apresentar, de forma estruturada, um conjunto de soluções típicas de LTS em Corrente Alternada (CA) para subsidiar a escolha inicial dos seus parâmetros, pelas equipes de planejamento da STE. Cada solução desse conjunto possui uma configuração típica e ampacidades associados.

1.2 Destaques desta Nota Técnica

Os principais destaques deste documento, em relação à NT anterior [1], são os seguintes:

- Inclusão de soluções em LT subaquáticas para níveis de tensão de 230 kV, 345 kV e 500 kV;
- Cálculo térmico considerando aprimoramentos na metodologia de cálculo de ampacidade e inclusão de elementos mais realistas, como o backfill (sobre esse material, ver item 2.2.1);
- Redução da quantidade de configurações de LT subterrâneas, visando refletir a experiência de implantações recentes, ao mesmo tempo em que é garantindo o foco em soluções de referência factíveis, imprimindo um caráter conciso ao conjunto de soluções;
- Ajustes nos dados de cabos que continham inconsistências em termos de dimensões ou em limites elétricos (espessura da isolação, tensão máxima de operação, fatores de efeito skin, dentre outros aspectos) estabelecidos nos normativos vigentes.

1.3 Resultados

Os resultados são apresentados nas Tabelas 4-1, 4-2 e 4-3 para LT subterrâneas, nos níveis de tensão em 230 kV, 345 kV e 500 kV, respectivamente. Já as Tabelas 4-4, 4-5 e 4-6 apresentam os resultados para LT subaquáticas, nessas mesmas tensões. Esses resultados foram processados através de programa computacional CYMCAP [5], conforme item 2.2.4, e podem contribuir visando agilizar o trabalho desenvolvido pelos diferentes grupos de trabalho da STE que atuam nos estudos de expansão da transmissão.

2 CARACTERÍSTICAS BÁSICAS DE CABOS ISOLADOS, PREMISSAS E CRITÉRIOS

2.1 Características básicas de cabos isolados

Cabos subterrâneos utilizados para transmissão e/ou distribuição de energia elétrica consistem de condutores trançados e/ou compactados formados por metais de alta condutividade como o cobre e o alumínio. A operação de LTS foi consolidada mundialmente ao longo do século passado com a utilização de cabos com isolação de papel impregnado de óleo. Todavia, atualmente, em sua maioria, são isolados com materiais poliméricos extrudados ao redor de um condutor central, sendo o XLPE (*Cross-Linked Polyethylene*) um dos materiais mais aplicados para a isolação.

O arranjo singular ou de múltiplos núcleos é encapsulado por um ou mais invólucros externos. Quando necessário, especialmente para LT subaquáticas, os condutores podem ser revestidos por camadas impermeáveis a água e protegidos por uma armadura metálica.

Desde que os cabos com isolação em XLPE surgiram, o processo de instalação e manutenção de LTS tem se tornado mais simples, se comparado às antigas instalações isoladas a óleo, por exemplo. Tal fato tem impulsionado a utilização dessa tecnologia na indicação de novos empreendimentos da RB, conforme discutido em mais detalhes no Capítulo 3. Um exemplo de cabo isolado para uso em LT de alta tensão é ilustrado na Figura 2-1.

Os cabos isolados modelados no conjunto de soluções fornecidos nesta NT foram definidos conforme três variáveis básicas:

- Nível de tensão (230, 345, e 500 kV);
- Seção condutora (800, 1000, 1200, 1600, 2000 e 2500 mm²);
- Material do condutor, alumínio (Al) ou cobre (Cu).

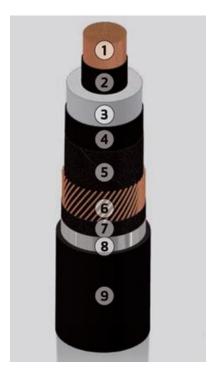


Figura 2-1 Cabo monopolar subterrâneo típico utilizado

A tabela a seguir descreve cada camada do condutor apresentado na Figura 2-1.

Tabela 2-1 Descrição das camadas de um cabo monopolar subterrâneo típico

Item	Descrição
Iccini	Beschique
1	Condutor, composto por fios trançados e/ou compactados, constituído de alumínio ou
1	cobre, divididos ou não em diferentes segmentos.
2	Blindagem do condutor, de material semicondutor extrudado.
3	Isolação, tipicamente de XLPE extrudado.
	Isolação, apicamente de XEI E extradado.
4	
4	Blindagem da isolação, com material semicondutor extrudado.
5	Fita semicondutora para bloqueio de água.
6	Blindagem metálica, constituída de fios de cobre.
7	Fita comissandutora nara blaqueia de áque
7	Fita semicondutora para bloqueio de água.
8	Barreira contra umidade, constituída por uma capa laminada de alumínio.
9	Cobertura, tipicamente de polietileno extrudado.

A seguir, alguns destaques são realizados:

Condutor:

O material do condutor pode ser cobre ou alumínio. Dois fenômenos particulares podem influenciar nos parâmetros elétricos e ampacidades: o efeito pelicular, também conhecido como efeito *skin*, e o efeito de proximidade.

De forma simplificada, o efeito pelicular surge quando da transmissão de correntes elétricas variantes no tempo e refere-se ao aumento da densidade de corrente na periferia dos condutores. Na prática, isto faz com que a seção condutora "efetiva" se reduza, aumentando a resistência elétrica "aparente" do condutor.

Em relação ao efeito de proximidade, similarmente, pequenos espaçamentos entre cabos de um mesmo circuito, e/ou de diferentes circuitos, fazem com que a corrente elétrica tenda a se concentrar na periferia dos condutores.

Para cabos com seção de até 1200 mm², normalmente, trabalha-se com condutores composto por fios concêntricos, sem segmentos. Nesses casos, os efeitos pelicular e de proximidade são mais relevantes, uma vez que a resistência de contato entre os fios concêntricos é menor.

Por outro lado, para condutores de maiores bitolas, acima 1200 mm², a formação se dá através de vários setores ou segmentos isolados uns dos outros através de fitas isolantes ou camadas semicondutoras como, por exemplo, resinas. Nesse caso, os efeitos *skin* e de proximidade são mitigados, reduzindo-se, portanto, as perdas elétricas, em função da redução da resistência "aparente" do condutor.

Blindagem metálica:

A tensão entre a superfície do condutor e a blindagem metálica pode variar de dezenas até centenas de quilovolts, a depender da tensão nominal do cabo e do regime de operação (permanente ou transitório). Entre a blindagem metálica e a superfície externa do cabo, normalmente em contato com o solo, são observados valores menores que dependem, dentre outros fatores, do esquema de aterramento adotado. A principal função dessa camada é confinar o campo elétrico interno do cabo na região ocupada pela camada isolante, agindo como um segundo eletrodo de um capacitor formado entre o condutor e a blindagem.

Embora a capa laminada ilustrada na Figura 2-1 esteja separada da blindagem metálica, via material semicondutor, a depender do fenômeno elas exercem grande influência uma na outra. Essa capa laminada tem importante função de barreira contra penetração de umidade. A depender das

características do local de instalação, a sua não existência poderia provocar a deterioração do isolamento do cabo, aumentando assim os riscos de falha do mesmo.

Diante do exposto, é necessário conectar a blindagem metálica e a capa laminada à terra em pelo menos um ponto ao longo da rota da LTS. Quanto ao aterramento dessas camadas, diferentes esquemas podem implementados. Os mais comuns são: (i) aterramento em apenas uma extremidade (single-point), (ii) aterramento em ambas as extremidades (both-ends); e (iii) conexão cruzada (cross-bonding) com aterramento nas extremidades de cada ciclo de transposição. Para uma melhor descrição e aplicação desses e outros esquemas de aterramento, pode-se verificar as referências [6-9]. Nesta NT, para as LT subterrâneas foi adotado como padrão o esquema cross-bonding e paras as subaquáticas o both-ends. Ressalta-se que, caso a LTS em estudo demande outro esquema de aterramento, os parâmetros elétricos e ampacidades típicos apresentados nesta NT devem ser revistos.

Outras questões relacionadas à blindagem metálica e à capa laminada são as seguintes:

- circulação de correntes capacitivas através da isolação;
- circulação de correntes de sequência zero decorrentes desequilíbrios na rede, como faltas faseterra. Esse fenômeno exige o correto dimensionamento da blindagem;
- circulação de correntes induzidas por campos magnéticos gerados no condutor e em cabos próximos;
- necessidade de isolamento entre a blindagem e a terra, principalmente para grandes seções de cabos.

No caso dos cabos subterrâneos desta NT, o dimensionamento dos fios de cobre da blindagem metálica, em conjunto com a capa laminada de alumínio, foi realizado conforme metodologia definida na norma IEC 60949 [10].

No caso dos cabos subterrâneos, adotou-se como premissa para a tensão de 230 kV um nível de curto-circuito de 50 kA, e tempo de 500 ms para eliminação do defeito, resultando em 90 fios de 1,85 mm de diâmetro. Já para as tensões de 345 kV e 500 kV, adotou-se 63 kA e tempo de 500 ms, resultando em 115 fios de 1,85 mm de diâmetro. Além disso, a distância linear de cabo para uma revolução completa dos fios de cobre (*length of lay*) foi ajustada como sendo igual a 8 vezes (passo) o valor do diâmetro externo da blindagem metálica. Este valor é típico, e está em linha com as recomendações de norma, conforme indicado em [11].

Ampacidade dos cabos isolados:

A capacidade máxima de transmissão de uma LTS é restringida, dentre outras coisas, pelo limite máximo de temperatura suportado pelos cabos isolados. Para uma mesma corrente elétrica, as temperaturas no cabo estão associadas, entre outros fatores, às seções condutoras, materiais, configurações e espaçamentos utilizados e às perdas elétricas (refletidas, inclusive, no aterramento da blindagem aplicado).

Conforme mencionado anteriormente, nesta NT são abordados apenas cabos com isolação em XPLE. Portanto, as soluções foram elaboradas considerando as temperaturas máximas suportadas por este material, sem que ocorra deterioração de suas propriedades elétricas.

Na literatura, normas técnicas e em catálogos de fabricantes pode-se verificar que o XLPE não suporta temperaturas maiores que 90 °C em condição normal de operação, por tempo indefinido. Em condição de emergência, desde que respeitados determinado número de horas e frequência de ocorrência, esse limite poderia ser elevado até 105 °C para cabos com tensão nominal acima de 138 kV [11-12]. É importante ressaltar, no entanto, que a vida útil do cabo isolado é reduzida quando ele é solicitado a operar continuamente em temperaturas acima de 90 °C por tempo indefinido.

No ANEXO A são apresentadas tabelas contendo as dimensões utilizadas para os cabos isolados considerados neste trabalho.

Apenas para fins elucidativos, as figuras subsequentes apresentam em detalhes os cortes transversais de alguns cabos considerados para o conjunto de soluções, e suas respectivas configurações de instalação.

Nas Figuras 2-2 e 2-3 é mostrado um cabo de alumínio de seção 1000 mm², em nível de tensão 230 kV, com configuração em circuito simples. Nas Figuras 2-4 e 2-5 é mostrado em destaque um cabo de alumínio de seção 2000 mm², em circuito duplo e em nível de tensão 345 kV. Ambas as soluções são para LT subterrâneas.

Já as Figuras 2-6 e 2-7 apresentam um cabo de alumínio de seção 1600 mm², em circuito duplo e em nível de tensão 230 kV, para LT subaquática, com cabos enterrados na praia.

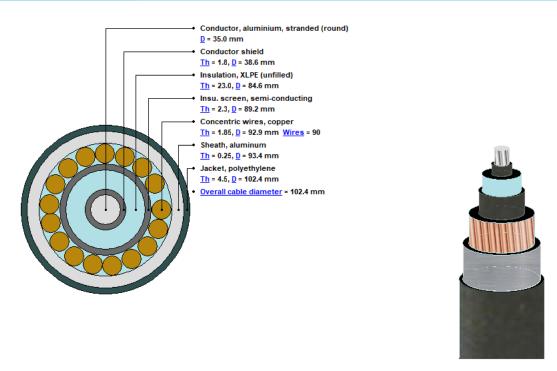


Figura 2-2 Al 1000 mm² 230 kV Subterrâneo. Fonte: [5]

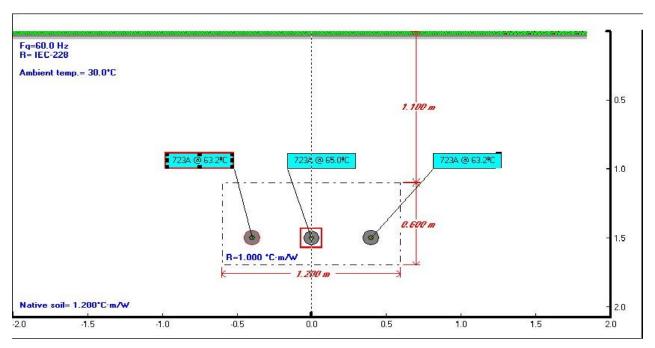


Figura 2-3 Disposição geométrica dos cabos da Figura 2-2 – Circuito simples. Fonte: [5]

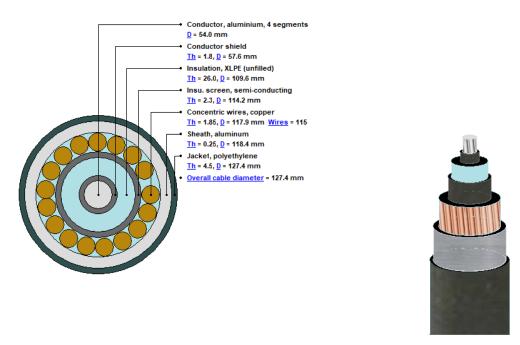


Figura 2-4 Al 2000mm² 345 kV Subterrâneo. Fonte: [5]

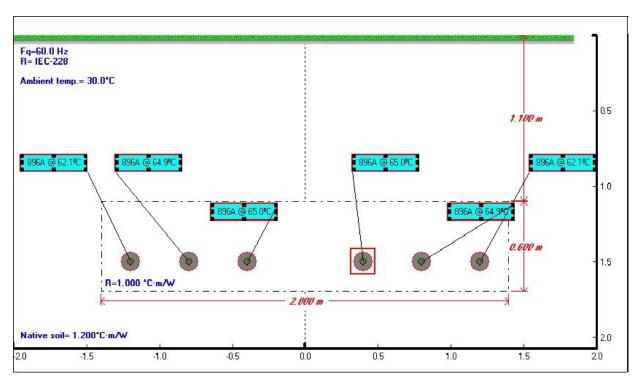


Figura 2-5 Disposição geométrica dos cabos da Figura 2-4 – Circuito duplo. Fonte: [5]

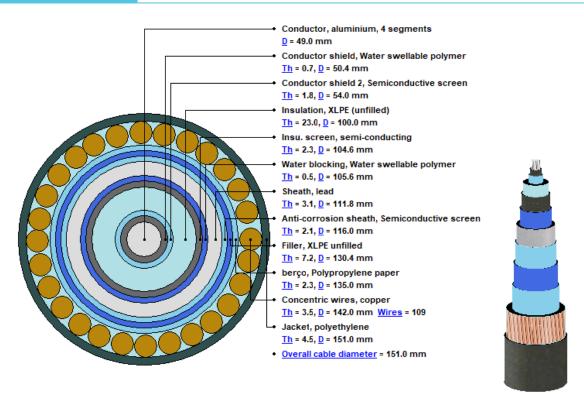


Figura 2-6 Al 1600 mm² 230 kV Subaquático. Fonte: [5]

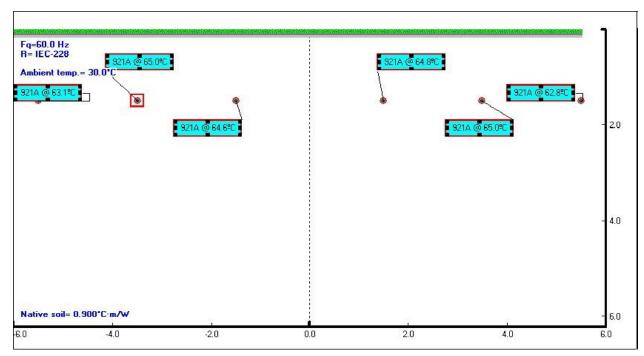


Figura 2-7 Disposição geométrica dos cabos subaquáticos da Figura 2-6 — Circuito duplo (praia). Fonte: [5]

2.2 Premissas e critérios para subsidiar a elaboração de soluções típicas de LTS

2.2.1 Premissas e condicionantes ambientais

Para determinar a máxima capacidade de corrente de uma LTS, vários aspectos ambientais devem ser considerados. Na fase de planejamento, não é possível realizar uma avaliação precisa dessas variáveis, dadas incertezas inerentes a essa etapa. Portanto, é necessário realizar algumas generalizações e aproximações.

Para elaboração desta NT, vale destacar, dentre vários, três parâmetros ambientais importantes para a determinação dessas capacidades: (i) a resistividade térmica do solo; (ii) a resistividade térmica do backfil^P; e (iii) a temperatura ambiente (e do solo).

Para além do valor da resistividade térmica do *backfill*, o volume ocupado por ele é fundamental para o dimensionamento térmico. Já a resistividade térmica do solo é a resistência apresentada pelo solo ao fluxo de calor, sendo fortemente influenciada por alguns fatores, como: mineralogia do solo, peso específico, quantidade de água em compactações, temperatura, dentre outros.

No ANEXO B, são apresentadas as premissas ambientais em destaque, utilizadas neste trabalho.

2.2.2 Premissas para escolha das configurações de instalação (em valas ou ambiente marinho)

Ao longo dos anos, a análise de relatórios de detalhamento R2 e a observação de alguns projetos básicos, por parte do planejamento da expansão da transmissão, tem permitido a observância de configurações típicas de implantação de LT subterrâneas no SIN, tanto no que concerne à disposição de cabos subterrâneos para transmitir uma determinada potência, tanto com 01 (um) quanto 02 (dois) circuitos na mesma vala, considerando os municípios que tiveram ou têm previsão de ter implantação de linhas de transmissão na RB com cabos isolados, quais sejam: Porto Alegre, Florianópolis, Curitiba, São Paulo, Salvador, Fortaleza, Brasília e Manaus. Já a experiência na implantação de LT submarinas no Brasil concerne a apenas alguns casos na grande Florianópolis e dispõe-se de menos informações.

A Figura 2-8 apresenta os arranjos típicos considerados para as LT subterrâneas avaliadas no conjunto de soluções deste trabalho. Todos as capacidades de corrente e parâmetros elétricos simulados e

_

² Backfill é o material utilizado para reaterrar a camada de terra envolta dos cabos isolados. Essa camada geralmente é formada por substâncias que possuem um melhor desempenho térmico que o solo original, melhorando, por vezes, o desempenho de capacidade das LTS. Em geral, esse material é formado por diferentes rochas moídas, entre outros materiais.

exibidos no item 4.2 estão associados a estas configurações e valas. As regiões hachuradas referemse à área preenchida por *backfill*.

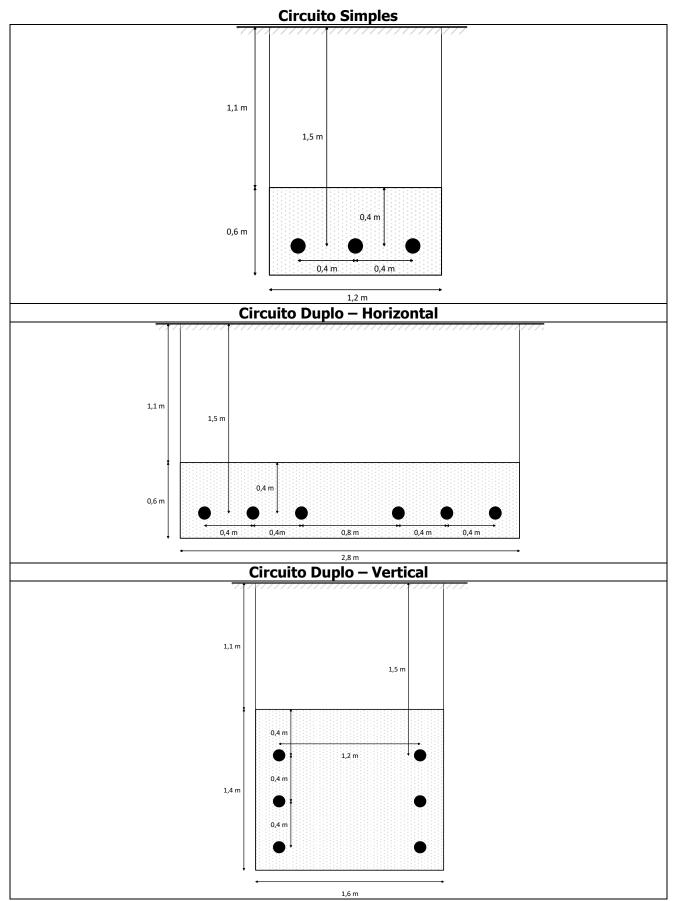


Figura 2-8 Exemplos de arranjos típicos para LT subterrâneas

Similarmente, são apresentados os arranjos típicos considerados para algumas das situações de LT subaquáticas, dispostas na praia, para fins de avaliação do conjunto de soluções deste trabalho. Todas as capacidades de corrente simuladas no item 4.3 estão associados a estas configurações.

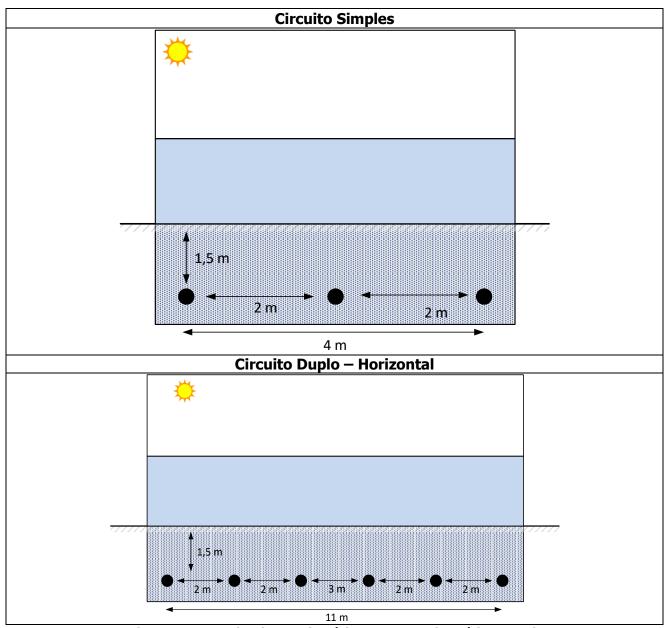


Figura 2-9 Exemplos de arranjos típicos para LT subaquáticas - praia

Por fim, são apresentados os arranjos típicos considerados para algumas das situações de LT subaquáticas, dispostas em leito marinho, para fins de avaliação do conjunto de soluções deste trabalho. Todos os parâmetros elétricos exibidos no item 4.3 estão associados a estas configurações.

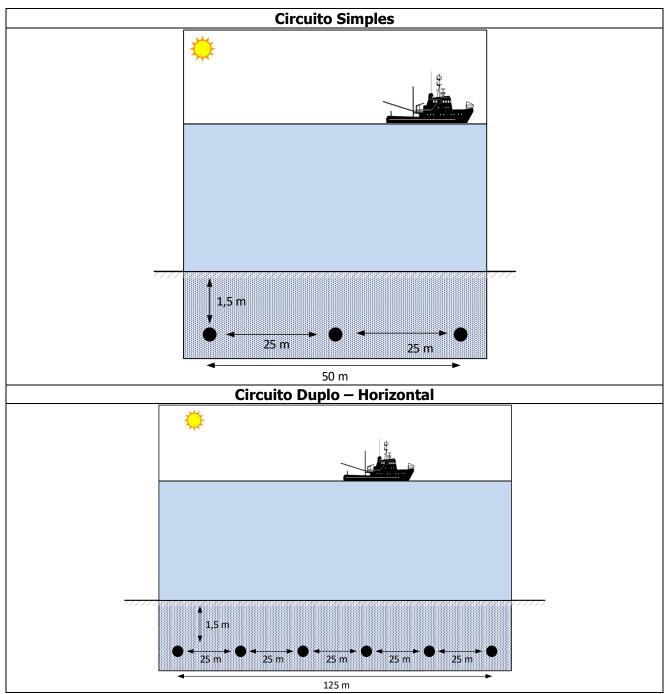


Figura 2-10 Exemplos de arranjos típicos para LT subaquáticas — leito marinho

2.2.3 Critérios para o dimensionamento das ampacidades do conjunto de soluções

Para os objetivos desta NT, o conjunto de soluções deve ser dimensionado, do ponto de vista de capacidade de corrente, de tal sorte que os cabos isolados [2]:

- i. Não atinjam uma temperatura maior que 65 °C em condição normal de operação e por um período de tempo indeterminado, considerando que eles possam transmitir, para um fator de carga de 85 %, o carregamento máximo verificado nessas condições.
- ii. Não atinjam uma temperatura maior que 90 °C por um período de 96 horas, condição de curta duração, visando transmitir continuamente o carregamento máximo verificado nessas condições. Neste caso, o fator de carga a ser considerado é unitário. Além disso, deve-se adotar como condição inicial a máxima temperatura obtida no item i. No caso de circuitos duplos, é admitido que a sobrecarga possa ocorrer de forma simultânea nos circuitos.
- iii. Não atinjam uma temperatura maior que 90 °C por um período de 4 horas, condição de curta duração, visando transmitir continuamente o carregamento máximo verificado nessas condições. Similarmente ao item ii, o fator de carga a ser considerado é unitário. Além disso, deve-se adotar como condição inicial a máxima temperatura obtida no item i. No caso de circuitos duplos, é admitido que a sobrecarga possa ocorrer de forma simultânea nos circuitos.
- iv. Possam operar em toda a faixa de tensão, conforme estabelecido em [3-4].

Cumpre ressaltar que os critérios definidos no item i são típicos, e devem ser revistos nas etapas de refinamento da LTS em estudo, visando uma melhor escolha da seção condutora. Além disso, ciclos de sobrecarga subsequentes, decorrentes de contingência no sistema, devem respeitar o tempo necessário para que os cabos alcancem temperaturas iguais ou inferiores à máxima temperatura obtida no item i, para que os tempos estabelecidos para as ampacidades de curta duração possam ser utilizados plenamente.

2.2.4 Programa computacional

Para realização das simulações dos conjuntos de soluções em LTS propostos por esta NT foi utilizado o programa CYMCAP [5].

O CYMCAP é um software dedicado ao dimensionamento de instalação de LT com cabos isolados. O módulo básico do CYMCAP permite a determinação da máxima corrente admissível nos cabos, para um dado critério de tempo e temperatura estabelecido.

O CYMCAP possui um módulo complementar, ZMAT, que permite o cálculo dos parâmetros elétricos dos cabos, necessários para os estudos de fluxo de potência, curto-circuito em regime permanente e de transitórios eletromagnéticos de manobra.

3 O ATUAL PANORAMA DAS LTS NA REDE BÁSICA

Embora a implantação de um volume maior de empreendimentos envolvendo LTS na RB do SIN seja uma experiência mais recente, conforme mencionado no capítulo de introdução, soluções utilizando cabos isolados são cada vez mais necessárias e recorrentes.

A seguir, é detalhado um quantitativo sobre o panorama atual de LTS na RB, quanto ao *status* dessas obras: em implantação, em operação, em implantação ou em estudo. Também podem ser observadas algumas variáveis como extensão das LTS, região geográfica, ano de entrada em operação (ou previsto).

Na Figura 3-1 o eixo das ordenadas considera o comprimento total da LTS em km por circuito trifásico, enquanto que no eixo das abcissas são destacados o ano e a região considerada na análise.

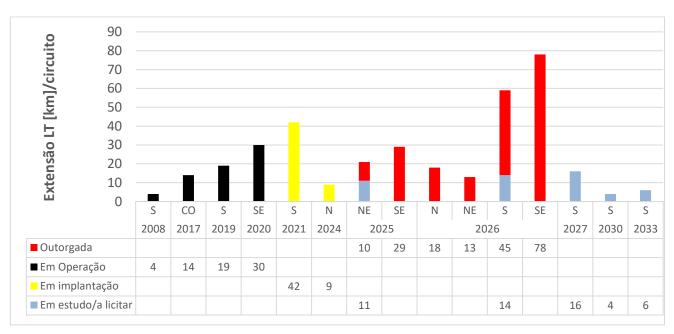


Figura 3-1 Distribuição de LTS no Brasil considerando a extensão por ano e região em km/circuito

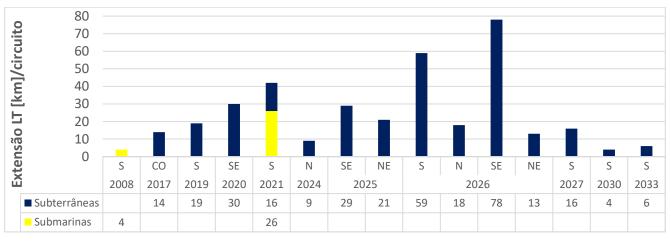


Figura 3-2 Extensão das LTS por ano e tipo em km/circuito

Dentre as LTS apresentadas na Figura 3-1, a maior parte delas referem-se à LT subterrâneas, conforme demonstrado na Figura 3-2, na qual apresenta-se uma diferenciação: se a LTS é do tipo subterrânea ou submarina. No eixo das ordenadas a extensão da LTS é em km por circuito. Já no eixo das abcissas é destacado o ano de entrada em operação ou previsto.

A Figura 3-3 mostra uma maior discretização das LTS, considerando o ano de entrada em operação ou previsto, e a extensão das LTS.

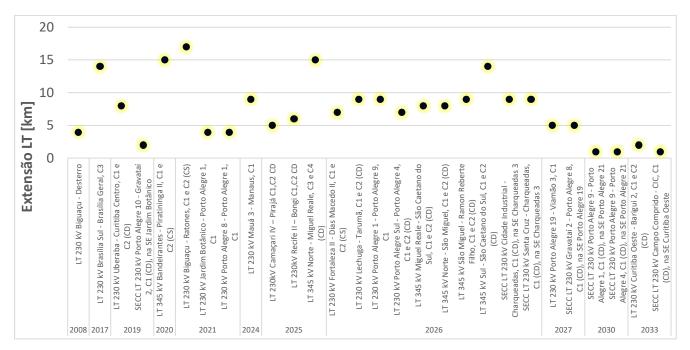


Figura 3-3 Comprimento discretizado por LTS e ano de entrada em operação ou previsto

4 PARÂMETROS ELÉTRICOS E AMPACIDADES PARA LTS

4.1 Introdução

Com o intuito de desenvolver uma faixa de soluções típicas para LTS, foram variadas as seções de condutores de cobre e alumínio, as distâncias entre circuitos (DC), as distâncias entre fases (DF), a quantidade de circuitos, simples (S) - 1 - ou duplo (D) - 2 -, e a disposição dos mesmos no solo, se vertical (V) ou horizontal (H), mantendo-se uma profundidade arbitrada (Prof) para os cabos, a partir de configurações típicas.

Nas tabelas deste capítulo, as abreviações Amp LD e Amp CD correspondem respectivamente às ampacidades de longa e curta duração, onde a longa duração está associada ao regime permanente com fator de carga de 0,85 e o regime de curta duração refere-se ao regime transitório, após a aplicação de um degrau de corrente durante um tempo de 96 ou 4 horas, tendo por início a situação de regime permanente.

Para cada configuração, é utilizado um código específico. Por exemplo, no caso do código **AL230CSH800**, lê-se: condutor de alumínio (AL), em nível de tensão 230 kV (230), em circuito simples (CS), configuração horizontal (H), seção 800 mm² (800).

Todos os parâmetros elétricos foram gerados considerando os condutores numa temperatura de 50 °C.

4.2 LT Subterrâneas

4.2.1 LT Subterrâneas em 230 kV

Para as configurações típicas de LT subterrâneas simuladas em nível de tensão 230 kV apresenta-se resultados detalhados extraídos do CYMCAP. Na sequência, a Tabela 4-1, apresenta os resultados para todas as configurações consideradas.

Tabela 4-1 Parâmetros elétricos e ampacidades para cabos subterrâneos de nível de tensão 230 kV

Configuração dos circuitos	Amp. LD (A)	Amp. CD 96 horas (A)	Amp. CD 4 horas (A)	R+ (Ω/km)	X+ (Ω/km)	R0 (Ω/km)	X0 (Ω/km)	Υ (μS/km)	Rm0 (Ω/km)	Xm0 (Ω/km)
AL230CDV800	550	810	965	0,0439	0,2719	0,1117	0,0974	66,8	0,0009	-0,0052
AL230CDH800	580	825	980	0,0442	0,2701	0,1118	0,0968	66,8	0,0007	-0,0047
AL230CDV1000	610	915	1100	0,0360	0,2653	0,1037	0,0934	70,6	0,0009	-0,0052
AL230CSH800	645	870	1015	0,0438	0,2721	0,1121	0,0929	66,8	-	-
AL230CDH1000	645	930	1110	0,0363	0,2635	0,1038	0,0929	70,6	0,0007	-0,0047
AL230CDV1200	655	990	1205	0,0316	0,2564	0,0990	0,0883	76,3	0,0009	-0,0052
AL230CDH1200	695	1015	1225	0,0319	0,2546	0,0991	0,0877	76,3	0,0007	-0,0047
AL230CSH1000	720	980	1155	0,0360	0,2654	0,1041	0,0893	70,6	-	-
AL230CSH1200	775	1060	1265	0,0315	0,2565	0,0994	0,0841	76,3	-	-
AL230CDV1600	800	1215	1510	0,0212	0,2465	0,0884	0,0829	83,4	0,0009	-0,0053
AL230CDH1600	855	1245	1535	0,0215	0,2447	0,0885	0,0824	83,4	0,0007	-0,0047
AL230CDV2000	890	1375	1745	0,0172	0,2392	0,0841	0,0791	89,3	0,0009	-0,0053
AL230CDH2000	950	1400	1755	0,0174	0,2374	0,0775	0,0775	89,3	0,0005	-0,0038
AL230CSH1600	955	1300	1580	0,0212	0,2467	0,0888	0,0787	83,4	-	-
AL230CDV2500	965	1510	1955	0,0148	0,2270	0,0813	0,0732	100,4	0,0010	-0,0053
CU230CDV1600	975	1490	1880	0,0137	0,2465	0,0395	0,0783	83,4	0,0000	-0,0008
AL230CDH2500	1030	1540	1980	0,0150	0,2251	0,0743	0,0715	100,4	0,0005	-0,0038
CU230CDH1600	1060	1555	1940	0,0140	0,2447	0,0810	0,0824	83,4	0,0007	-0,0047
AL230CSH2000	1070	1460	1805	0,0171	0,2393	0,0845	0,0749	89,3	-	-
CU230CDV2000	1095	1705	2195	0,0114	0,2348	0,0782	0,0770	93,0	0,0009	-0,0053
AL230CSH2500	1165	1610	2040	0,0147	0,2271	0,0818	0,0690	100,4	-	-
CU230CDH2000	1175	1745	2230	0,0117	0,2330	0,0784	0,0764	93,0	0,0008	-0,0047
CU230CSH1600	1185	1625	1995	0,0137	0,2467	0,0814	0,0787	83,4	-	-
CU230CDV2500	1195	1790	2470	0,0097	0,2283	0,0762	0,0738	99,1	0,0010	-0,0053
CU230CDH2500	1280	1920	2500	0,0100	0,2264	0,0764	0,0733	99,1	0,0008	-0,0047
CU230CSH2000	1320	1830	2305	0,0114	0,2350	0,0787	0,0727	93,0	-	-
CU230CSH2500	1440	2005	2570	0,0096	0,2284	0,0767	0,0696	99,1	-	-

4.2.2 LT Subterrâneas em 345 kV

Para as configurações típicas de LT subterrâneas simuladas em nível de tensão 345 kV apresenta-se resultados detalhados extraídos do CYMCAP. A Tabela 4-2 apresenta os resultados.

Tabela 4-2 Parâmetros elétricos e ampacidades para cabos subterrâneos de nível de tensão 345 kV

Configuração dos circuitos	Amp. LD (A)	Amp. CD 96 horas (A)	Amp. CD 4 horas (A)	R+ (Ω/km)	X+ (Ω/km)	R0 (Ω/km)	X0 (Ω/km)	Υ (μS/km)	Rm0 (Ω/km)	Xm0 (Ω/km)
AL345CDV800	515	795	945	0,0439	0,2719	0,0997	0,1000	61,4	0,0005	-0,0036
AL345CDH800	550	815	965	0,0441	0,2701	0,1015	0,0999	61,4	0,0004	-0,0034
AL345CDV1000	575	890	1070	0,0360	0,2653	0,0936	0,0962	64,8	0,0005	-0,0038
AL345CDH1000	615	910	1085	0,0363	0,2635	0,0937	0,0958	64,8	0,0004	-0,0034
AL345CDV1200	615	965	1180	0,0316	0,2564	0,0893	0,0909	69,9	0,0006	-0,0039
AL345CSH800	620	850	995	0,0438	0,2720	0,1015	0,0973	61,4	-	-
AL345CDH1200	660	990	1205	0,0319	0,2545	0,0899	0,0906	69,9	0,0005	-0,0035
AL345CSH1000	690	950	1125	0,0360	0,2654	0,0937	0,0932	64,8	-	-
AL345CSH1200	740	1035	1240	0,0315	0,2565	0,0894	0,0878	69,9	-	-
AL345CDV1600	745	1095	1365	0,0212	0,2465	0,0761	0,0848	76,2	0,0006	-0,0040
AL345CDH1600	800	1245	1505	0,0214	0,2447	0,0762	0,0810	76,2	0,0005	-0,0036
AL345CDV2000	830	1200	1535	0,0171	0,2392	0,0717	0,0808	81,5	0,0004	-0,0032
AL345CDV2500	890	1285	1680	0,0148	0,2283	0,0687	0,0752	90,2	0,0005	-0,0035
AL345CDH2000	895	1225	1545	0,0174	0,2373	0,0718	0,0805	81,5	0,0005	-0,0036
AL345CSH1600	910	1170	1430	0,0212	0,2467	0,0762	0,0820	76,2	-	-
CU345CDV1600	925	1480	1770	0,0137	0,2465	0,0687	0,0848	76,2	0,0005	-0,0036
AL345CDH2500	965	1315	1700	0,0150	0,2264	0,0688	0,0748	90,2	0,0004	-0,0031
CU345CDV2000	1015	1650	2150	0,0114	0,2348	0,0658	0,0786	84,8	0,0005	-0,0035
AL345CSH2000	1015	1280	1595	0,0171	0,2393	0,0718	0,0799	81,5	-	-
CU345CDH1600	1060	1555	1930	0,0140	0,2447	0,0686	0,0844	76,2	0,0004	-0,0032
CU345CDH2000	1100	1695	2185	0,0117	0,2330	0,0658	0,0782	84,8	0,0004	-0,0032
CU345CDV2500	1100	1825	2440	0,0097	0,2283	0,0637	0,0752	90,2	0,0005	-0,0035
AL345CSH2500	1105	1375	1755	0,0147	0,2284	0,0688	0,0724	90,2	-	-
CU345CSH1600	1130	1580	1955	0,0137	0,2467	0,0687	0,0820	76,2	-	-
CU345CDH2500	1195	1865	2460	0,0099	0,2264	0,0637	0,0748	90,2	0,0004	-0,0031
CU345CSH2000	1250	1770	2245	0,0114	0,2350	0,0659	0,0757	84,8	-	-
CU345CSH2500	1365	1960	2545	0,0096	0,2284	0,0638	0,0724	90,2	-	-

4.2.3 LT Subterrâneas em 500 kV

A Tabela 4-3 apresenta os resultados das linhas subterrâneas em 500 kV, obtidos com o *software* CYMCAP para as configurações consideradas.

Tabela 4-3 Parâmetros elétricos e ampacidades para cabos subterrâneos de nível de tensão 500 kV

Configuração dos circuitos	Amp. LD (A)	Amp. CD 96 horas (A)	Amp. CD 4 horas (A)	R+ (Ω/km)	X+ (Ω/km)	R0 (Ω/km)	X0 (Ω/km)	Υ (μS/km)	Rm0 (Ω/km)	Xm0 (Ω/km)
AL500CDV1200	550	910	1130	0,0316	0,2592	0,0896	0,1075	53,9	0,0006	-0,0041
AL500CDH1200	600	940	1155	0,0318	0,2573	0,0896	0,1070	53,9	0,0005	-0,0036
AL500CDV1600	650	1125	1430	0,0212	0,2466	0,0793	0,0934	65,7	0,0006	-0,0041
AL500CSH1200	685	980	1190	0,0315	0,2594	0,0897	0,1042	53,9	-	-
AL500CDH1600	715	1160	1460	0,0215	0,2448	0,0794	0,0929	65,7	0,0005	-0,0036
AL500CDV2000	715	1260	1645	0,0172	0,2392	0,0754	0,0890	70,1	0,0006	-0,0041
AL500CDV2500	755	1380	1860	0,0148	0,2269	0,0733	0,0824	78,2	0,0007	-0,0042
AL500CDH2000	790	1305	1680	0,0174	0,2373	0,0754	0,0886	70,1	0,0005	-0,0037
CU500CDV1600	810	1400	1810	0,0137	0,2466	0,0719	0,0934	65,7	0,0006	-0,0041
AL500CSH1600	830	1210	1505	0,0212	0,2468	0,0795	0,0901	65,7	-	-
AL500CDH2500	840	1260	1900	0,0151	0,2251	0,0733	0,0819	78,2	0,0005	-0,0038
CU500CDV2000	870	1565	2090	0,0114	0,2348	0,0697	0,0866	72,9	0,0007	-0,0042
CU500CDH1600	890	1330	1845	0,0140	0,2448	0,0719	0,0929	65,7	0,0005	-0,0036
AL500CSH2000	925	1360	1720	0,0171	0,2393	0,0756	0,0857	70,1	-	-
CU500CDV2500	930	1720	2370	0,0097	0,2269	0,0681	0,0824	78,2	0,0007	-0,0042
CU500CDH2000	965	1610	2130	0,0117	0,2330	0,0698	0,0862	72,9	0,0005	-0,0037
AL500CSH2500	995	1490	1945	0,0147	0,2271	0,0735	0,0790	78,2	-	-
CU500CSH1600	1030	1510	1905	0,0137	0,2468	0,0720	0,0901	65,7	-	-
CU500CDH2500	1035	1775	2415	0,0099	0,2251	0,0682	0,0819	78,2	0,0005	-0,0038
CU500CSH2000	1130	1690	2190	0,0114	0,2350	0,0699	0,0833	72,9	-	-
CU500CSH2500	1230	1865	2490	0,0096	0,2271	0,0629	0,0786	78,2	-	-

4.3 LT Subaquáticas

As simulações das LT subaquáticas foram divididas em duas partes: (i) praia; e (ii) leito marinho. Os valores foram agrupados para compor as tabelas a seguir. As ampacidades conforme simulações do trecho de praia e parâmetros elétricos conforme trecho do leito marinho.

Nas simulações da praia foram obtidos valores de ampacidade mais conservadores que no leito por conta da temperatura ambiente adotada para esse ambiente. Na praia, os cabos são considerados diretamente enterrados, sem *backfill*, com temperatura ambiente de 30 °C. Uma vez que a condição nas praias, de forma geral, possui caráter mais restritivo que no leito, este último com menor temperatura, as ampacidades das tabelas 4-4 a 4-6 são definidas a partir desse trecho.

Por outro lado, os parâmetros elétricos unitários foram obtidos considerado a parte do leito marinho, por tipicamente abranger a maior extensão da LTS. As distâncias entre fases e circuitos adotadas para o leito foram de 25 metros. Em função das grandes separações entre os cabos no leito marinho, as impedâncias mútuas são desprezíveis e, portanto, não foram acrescentadas nas tabelas deste tipo de instalação.

4.3.1 LT Subaquáticas em 230 kV

Para as configurações típicas de LT subaquáticas simuladas em nível de tensão 230 kV apresenta-se resultados detalhados extraídos do CYMCAP. Na sequência, a Tabela 4-4 apresenta os resultados para todas as configurações consideradas.

Tabela 4-4 Parâmetros elétricos e ampacidades para cabos subaquáticos de nível de tensão 230 kV

Configuração dos circuitos	Amp. LD (A)	Amp. CD 96 horas (A)	Amp. CD 4 horas (A)	R+ (Ω/km)	X+ (Ω/km)	R0 (Ω/km)	X0 (Ω/km)	Υ (μS/km)
AL230CDH800	660	865	965	0,0645	0,1160	0,0645	0,1112	61,0
AL230CSH800	670	870	970	0,0610	0,1111	0,0644	0,1116	61,0
AL230CDH1000	725	955	1075	0,0562	0,107	0,0561	0,1066	64,5
AL230CSH1000	735	960	1085	0,0562	0,107	0,0561	0,1065	64,5
AL230CDH1200	780	1030	1180	0,0509	0,1009	0,0509	0,1005	69,9
AL230CSH1200	790	1040	1185	0,0509	0,1009	0,0508	0,1005	69,9
AL230CDH1600	920	1215	1430	0,0393	0,0945	0,0393	0,0942	76,5
AL230CSH1600	935	1230	1435	0,0394	0,0945	0,0393	0,0941	76,5
AL230CDH2000	1005	1335	1600	0,0347	0,0899	0,0346	0,0896	82,0
AL230CSH2000	1025	1355	1615	0,0347	0,0899	0,0346	0,0896	82,0
CU230CDH1600	1055	1405	1700	0,0319	0,0945	0,0318	0,0942	76,5
CU230CSH1600	1075	1425	1715	0,0319	0,0945	0,0318	0,0941	76,5
AL230CDH2500	1090	1460	1790	0,0311	0,0827	0,0311	0,0824	92,3
AL230CSH2500	1110	1470	1800	0,0311	0,0827	0,0311	0,0823	92,3
CU230CDH2000	1140	1535	1905	0,0289	0,0873	0,0288	0,087	85,5
CU230CSH2000	1165	1550	1915	0,0289	0,0873	0,0288	0,0869	85,5
CU230CDH2500	1230	1660	2115	0,026	0,0827	0,026	0,0824	92,3
CU230CSH2500	1280	1710	2165	0,026	0,0827	0,0259	0,0823	92,3

4.3.2 LT Subaquáticas em 345 kV

Para as configurações típicas de LT subaquáticas simuladas em nível de tensão 345 kV apresenta-se resultados detalhados extraídos do CYMCAP. Na sequência, a Tabela 4-5 apresenta os resultados para todas as configurações considerada.

Tabela 4-5 Parâmetros elétricos e ampacidades para cabos subaquáticos de nível de tensão 345 kV

Configuração dos	Amp.	Amp. CD	Amp. CD	R+	X+	R0	X0	Y
circuitos	LD (A)	96 horas (A)	4 horas (A)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(µS/km)
AL345CDH800	645	855	960	0,0636	0,1152	0,0635	0,1149	56,5
AL345CSH800	655	860	965	0,0636	0,1152	0,0635	0,1148	56,5
AL345CDH1000	705	945	1075	0,0551	0,1105	0,0551	0,1102	59,7
AL345CSH1000	720	950	1080	0,0551	0,1105	0,055	0,1101	59,7
AL345CDH1200	760	1020	1175	0,0501	0,1043	0,0501	0,104	64,5
AL345CSH1200	770	1030	1185	0,0501	0,1043	0,055	0,1039	64,5
AL345CDH1600	900	1205	1430	0,0376	0,1194	0,0376	0,1190	70,5
AL345CSH1600	915	1220	1440	0,0376	0,1194	0,0376	0,1190	70,5
AL345CDH2000	985	1335	1610	0,0335	0,0931	0,0335	0,0929	75,4
AL345CSH2000	1005	1345	1620	0,0347	0,0899	0,0346	0,0896	75,4
CU345CDH1600	1030	1400	1695	0,0312	0,0946	0,0311	0,0943	70,5
CU345CSH1600	1050	1415	1710	0,0312	0,0946	0,0311	0,0942	70,5
AL345CDH2500	1060	1450	1800	0,0304	0,0856	0,0304	0,0854	84,7
AL345CSH2500	1085	1465	1810	0,0304	0,0856	0,0304	0,0856	84,7
CU345CDH2000	1125	1540	1935	0,0277	0,0904	0,0277	0,0901	75,4
CU345CSH2000	1150	1555	1945	0,0277	0,0904	0,0277	0,0901	75,4
CU345CDH2500	1205	1655	2145	0,0253	0,0856	0,0253	0,0854	84,7
CU345CSH2500	1230	1670	2155	0,0253	0,0856	0,0253	0,0853	84,7

4.3.3 LT Subaquáticas em 500 kV

Para as configurações típicas de LT subaquáticas simuladas em nível de tensão 500 kV apresenta-se resultados detalhados extraídos do CYMCAP. Na sequência, a Tabela 4-6 apresenta os resultados para todas as configurações consideradas.

Tabela 4-6 Parâmetros elétricos e ampacidades para cabos subaquáticos de nível de tensão 500 kV

AL500CDH1200 730 1000 1180 0,0476 0,1168 0,0475 0,1166 51,5 AL500CSH1200 745 1010 1185 0,0476 0,1168 0,0475 0,1165 51,5 AL500CDH1600 875 1195 1460 0,0363 0,1079 0,0362 0,1077 57,1 AL500CSH1600 890 1210 1470 0,0363 0,1079 0,0362 0,1076 57,1 AL500CDH2000 960 1300 1655 0,0315 0,1028 0,0314 0,1026 60,9 AL500CSH2000 980 1335 1665 0,0315 0,1028 0,0314 0,1025 60,0 CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CSH1600 1040 1420 1790 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 <	Configuração dos circuitos	Amp. LD (A)	Amp. CD 96 horas (A)	Amp. CD 4 horas (A)	R+ (Ω/km)	X+ (Ω/km)	R0 (Ω/km)	X0 (Ω/km)	Υ (μS/km)
AL500CSH1200 745 1010 1185 0,0476 0,1168 0,0475 0,1165 51,5 AL500CDH1600 875 1195 1460 0,0363 0,1079 0,0362 0,1077 57,1 AL500CSH1600 890 1210 1470 0,0363 0,1079 0,0362 0,1076 57,1 AL500CDH2000 960 1300 1655 0,0315 0,1028 0,0314 0,1026 60,9 AL500CSH2000 980 1335 1665 0,0315 0,1028 0,0314 0,1025 60,0 CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CSH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9									
AL500CDH1600 875 1195 1460 0,0363 0,1079 0,0362 0,1077 57,1 AL500CSH1600 890 1210 1470 0,0363 0,1079 0,0362 0,1076 57,1 AL500CDH2000 960 1300 1655 0,0315 0,1028 0,0314 0,1026 60,9 AL500CSH2000 980 1335 1665 0,0315 0,1028 0,0314 0,1025 60,0 CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CSH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CDH1200	730	1000	1180	0,0476	0,1168	0,0475	0,1166	51,5
AL500CSH1600 890 1210 1470 0,0363 0,1079 0,0362 0,1076 57,1 AL500CDH2000 960 1300 1655 0,0315 0,1028 0,0314 0,1026 60,9 AL500CSH2000 980 1335 1665 0,0315 0,1028 0,0314 0,1025 60,0 CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CSH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CSH1200	745	1010	1185	0,0476	0,1168	0,0475	0,1165	51,5
AL500CDH2000 960 1300 1655 0,0315 0,1028 0,0314 0,1026 60,9 AL500CSH2000 980 1335 1665 0,0315 0,1028 0,0314 0,1025 60,0 CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CDH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CDH1600	875	1195	1460	0,0363	0,1079	0,0362	0,1077	57,1
AL500CSH2000 980 1335 1665 0,0315 0,1028 0,0314 0,1025 60,0 CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CDH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CSH1600	890	1210	1470	0,0363	0,1079	0,0362	0,1076	57,1
CU500CDH1600 1020 1410 1775 0,0288 0,1079 0,0288 0,1077 57,1 AL500CDH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CDH2000	960	1300	1655	0,0315	0,1028	0,0314	0,1026	60,9
AL500CDH2500 1035 1440 1855 0,0286 0,0948 0,0285 0,0946 67,9 CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CSH2000	980	1335	1665	0,0315	0,1028	0,0314	0,1025	60,0
CU500CSH1600 1040 1420 1790 0,0288 0,1079 0,0287 0,1076 57,1 AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	CU500CDH1600	1020	1410	1775	0,0288	0,1079	0,0288	0,1077	57,1
AL500CSH2500 1060 1460 1870 0,0286 0,0948 0,0285 0,0945 67,9	AL500CDH2500	1035	1440	1855	0,0286	0,0948	0,0285	0,0946	67,9
	CU500CSH1600	1040	1420	1790	0,0288	0,1079	0,0287	0,1076	57,1
CU500CDH2000 1110 1550 2020 0,0257 0,0999 0,0257 0,0997 63,2	AL500CSH2500	1060	1460	1870	0,0286	0,0948	0,0285	0,0945	67,9
	CU500CDH2000	1110	1550	2020	0,0257	0,0999	0,0257	0,0997	63,2
CU500CSH2000 1135 1565 2030 0,0257 0,0999 0,0257 0,0996 63,2	CU500CSH2000	1135	1565	2030	0,0257	0,0999	0,0257	0,0996	63,2
CU500CDH2500 1185 1650 2250 0,0234 0,0948 0,0235 0,0946 67,9	CU500CDH2500	1185	1650	2250	0,0234	0,0948	0,0235	0,0946	67,9
CU500CSH2500 1215 1690 2265 0,0234 0,0945 0,0235 0,0946 67,9	CU500CSH2500	1215	1690	2265	0,0234	0,0945	0,0235	0,0946	67,9

5 REFERÊNCIAS

- [1] EPE. Definição de parâmetros iniciais para o planejamento de linhas de transmissão subterrâneas, Nota Técnica EPE-DEE-NT-004/2017-rev0, fevereiro de 2017.
- [2] Almeida, J. H. M., Carvalho Jr, D. S., Lima, S. F. F., Schmidt, F. e Carvalho, C. B. C. Linhas De Transmissão Com Cabos Isolados De Alta E Extra Alta Tensão No Brasil: Uma Realidade Com Demanda Crescente XXV SNPTEE, novembro de 2019.
- [3] ONS. Procedimentos de Rede Submódulo 2.7 Requisitos mínimos para linhas de transmissão. 2021.
- [4] ONS. Procedimentos de Rede Submódulo 2.3 Premissas, critérios e metodologia para estudos elétricos. 2021.
- [5] Programa CYMCAP. Disponível em: < http://www.cyme.com/software/cymcap/ Acesso em 13/08/2021.
- [6] IEEE Std 575-2014, IEEE Guide for Bonding Shields and Sheaths of Single-Conductor Power Cables Rated 5 kV through 500 kV (Revision of IEEE Std 575-1988).
- [7] CIGRE. (1973). The design of specially bonded cable systems, ELT 028 2. WG 21.07. ELECTRA.
- [8] CIGRE. (1976). The design of specially bonded cable systems (Second part), ELT_047_3. WG 21.07. ELECTRA.
- [9] CIGRE. (2005). Special bonding of high voltage power cables. Technical Brochure n° 283. WG B1.18.
- [10] IEC. (1988). AMD1:2008. IEC 60949 Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects.
- [11] ICEA. (2018). ICEA S-108-720-2018: Standard for Extruded Insulation Power Cables Rated Above 46 Through 500 kV AC.
- [12] CIGRE. (2015). A guide for rating calculations of insulated cables. Technical Brochure n° 640. WG B1.35.
- [13] IEC. (2006). IEC 60287 Electric cables Calculation of the current rating Part 1-1: Current rating equations (100 % load factor) and calculation of losses General.
- [14] IEC. (2017). IEC 60287 Electric cables Calculation of the current rating Part 3-1: Operating conditions Site reference conditions.

ANEXO A

Neste Anexo são apresentadas as tabelas contendo as dimensões, em milímetros, das camadas dos cabos subterrâneos e subaquáticos. Diâmetros de cabos marcados com (*) referem-se a cabos tipo Milliken³, vide [12], enquanto que cabos não marcados são cabos redondos encordoados.

Quanto ao XLPE, foi adotada uma constante dielétrica igual a 2,5, conforme norma [13].

CÓDIGOS DAS CAMADAS DOS CABOS SUBTERRÂNEOS

dc - Diâmetro do condutor

sc – Espessura da blindagem do condutor (camada semicondutora interna)

i – Espessura da isolação (XLPE), conforme norma [11]

scd – Espessura da blindagem da isolação (camada semicondutora externa)

dbc – Espessura da blindagem metálica (fios de cobre)

ea - Espessura da capa laminada (capa de alumínio)

cob – Espessura da cobertura externa (polietileno)

I. of lay – *Length of lay*

Tabela A-1 Dimensões dos cabos subterrâneos de nível de tensão 230 kV

Bitolas (mm²)				Al	umínio			
	dc	SC	i	scd	dbc	ea	cob	I. of lay
800	35	1,8	23	2,3	1,85	0,25	4,5	743,2
1000	38,2	1,8	23	2,3	1,85	0,25	4,5	768,8
1200	43	1,8	23	2,3	1,85	0,25	4,5	807,2
1600	49*	1,8	23	2,3	1,85	0,25	4,5	879
2000	54*	1,8	23	2,3	1,85	0,25	4,5	945
2500	63,5*	1,8	23	2,3	1,85	0,25	4,5	986
					Cobre			
	dc	SC	i	scd	dbc	ea	cob	l. of lay
1600	49*	1,8	24,5	2,3	1,85	0,25	4,5	879
2000	57,2*	1,8	24,5	2,3	1,85	0,25	4,5	945
2500	62,4*	1,8	24,5	2,3	1,85	0,25	4,5	986

³ Condutores do tipo Milliken são aqueles segmentados em diferentes setores, separados geralmente por fina camada isolante. Usados geralmente em cabos de maior seção visando diminuir o efeito pelicular.

Tabela A-2 Dimensões dos cabos subterrâneos de nível de tensão 345 kV

Bitolas (mm²)				A	lumínio			
	dc	SC	i	scd	dbc	ea	cob	l. of lay
800	35	1,8	26	2,3	1,85	0,25	4,5	791,2
1000	38,2	1,8	26	2,3	1,85	0,25	4,5	816,8
1200	43	1,8	26	2,3	1,85	0,25	4,5	855,2
1600	49*	1,8	26	2,3	1,85	0,25	4,5	903,2
2000	54*	1,8	26	2,3	1,85	0,25	4,5	943,2
2500	63,5*	1,8	26	2,3	1,85	0,25	4,5	1019,2
					Cobre			
	dc	SC	i	scd	dbc	ea	cob	l. of lay
1600	49*	1,8	26	2,3	1,85	0,25	4,5	903,2
2000	57,2*	1,8	26	2,3	1,85	0,25	4,5	968,8
2500	62,4*	1,8	26	2,3	1,85	0,25	4,5	1010,4

Tabela A-3 Dimensões dos cabos subterrâneos de nível de tensão 500 kV

Bitolas (mm²)				Al	lumínio			
	dc	SC	i	scd	dbc	ea	cob	l. of lay
1200	41,4	1,8	37	2,3	1,85	0,25	4,5	1018,4
1600	48,9*	1,8	32	2,3	1,85	0,25	4,5	998,4
2000	54*	1,8	32	2,3	1,85	0,25	4,5	1039,2
2500	63,5*	1,8	32	2,3	1,85	0,25	4,5	1115,2
					Cobre			
	Dc	SC	i	scd	Dbc	ea	cob	I. of lay
1600	48,9*	1,8	32	2,3	1,85	0,25	4,5	998,4
2000	57,2*	1,8	32	2,3	1,85	0,25	4,5	1064,8
2500	63,5*	1,8	32	2,3	1,85	0,25	4,5	1115,2

CÓDIGOS DAS CAMADAS DOS CABOS SUBAQUÁTICOS

dc – Diâmetro do condutor

fsc1 – Barreira contra penetração de umidade do condutor

sc – Espessura da blindagem do condutor (camada semicondutora interna)

i – Espessura da isolação (XLPE), conforme norma [11]

sc – Espessura da blindagem da isolação (camada semicondutora externa)

fsc2 - Barreira contra penetração de umidade da isolação

cp_pb – Espessura da blindagem metálica (capa de chumbo)

cp_anti - Espessura da cobertura anti-corrosão (semicondutor)

ench – Espessura do enchimento (fios de plástico)

berço – Espessura do berço de armadura (fios de polipropileno embebidos em betume)

arm – Espessura da armadura (fios de cobre)

cob – Espessura da cobertura externa (fios de polipropileno embebidos em betume)

nfc - Quantidade de fios de cobre da armadura

I. of lay – Length of lay

Tabela A-4 Dimensões dos cabos subaquáticos de nível de tensão 230 kV

Bitola (mm²)	Alumínio														
	dc	fsc1	SC	i	SC	fsc2	cp_pb	cp_anti	ench	berço	arm	cob	nfc	I. of lay	
800	35	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	95	1815,3	
1000	38,2	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	97	1875,3	
1200	43	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	101	1935,3	
1600	49*	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	109	2025,3	
2000	54*	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	113	2148,3	
2500	63,5*	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	121	2242,8	
					Cobre										
	Dc	fsc1	SC	i	SC	fsc2	cp_pb	cp_anti	ench	berço	arm	cob	nfc	I. of lay	
1600	49*	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	109	2025,3	
2000	57,2*	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	113	2148,3	
2500	63,5*	0,7	1,8	23	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	121	2242,8	

Tabela A-5 Dimensões dos cabos subaquáticos de nível de tensão 345 kV

Bitola (mm²)	Alumínio														
	dc	fsc1	sc	i	SC	fsc2	cp_pb	cp_anti	ench	berço	arm	cob	nfc	I. of lay	
800	35	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	99	1905,3	
1000	38,2	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	102	1965,3	
1200	43	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	105	2025,3	
1600	49*	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	114	2115,3	
2000	54*	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	121	2238,3	
2500	63,5	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	126	2332,8	
					Cobre										
i	Dc	fsc1	SC	i	SC	fsc2	cp_pb	cp_anti	ench	berço	arm	cob	nfc	I. of lay	
1600	49*	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	114	2115,3	
2000	57,2*	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	121	2238,3	
2500	63,5*	0,7	1,8	26	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	126	2332,8	

Tabela A-6 Dimensões dos cabos subaquáticos de nível de tensão 500 kV

Bitola (mm²)	Alumínio													
	Dc	fsc1	SC	i	sc	fsc2	cp_pb	cp_anti	ench	berço	arm	cob	nfc	l. of lay
1200	41,4	0,7	1,8	36	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	121	2317,8
1600	48,9*	0,7	1,8	36	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	130	2413,8
2000	54*	0,7	1,8	36	2,3	0,5	3,1	2,1	7,2	2,3	3,5	4,5	137	2538,3
2500	63,5*	0,7	1,8	36	2,3	0,5	3,1	2,11	7,2	2,3	3,5	4,5	142	2632,8
	Cobre													
	Dc	fsc1	SC	i	SC	fsc2	cp_pb	cp_anti	ench	berço	arm	cob	nfc	l. of lay
1600	48,9*	0,7	1,8	36	2,3	0,5	3,1	2,11	7,2	2,3	3,5	4,5	130	2413,8
2000	57,2*	0,7	1,8	36	2,3	0,5	3,1	2,11	7,2	2,3	3,5	4,5	137	2538,3
2500	63,5*	0,7	1,8	36	2,3	0,5	3,1	2,11	7,2	2,3	3,5	4,5	142	2632,8

ANEXO B

Nesta NT, embora valores mais severos pudessem ser considerados, foram adotados valores para as resistividades térmicas e temperaturas ambiente estimados como conservadores para uma ampla faixa de aplicações. Portanto, para ambas as instalações, subterrânea e subaquática, os resultados abrangem uma ampla faixa de condições geográficas no Brasil.

Instalações subterrâneas: neste tipo foi considerada a temperatura ambiente de 30 °C, a favor da segurança, dada a profundidade de 1,5 m. Valor tradicionalmente utilizado para as regiões N e NE. Deve cobrir, com segurança, boa parte do território nacional. No entanto, cabe um alerta que este parâmetro (assim como os demais) deve ser analisado com mais detalhe no refinamento da solução.

O valor de resistividade térmica do solo adotado foi 1,2 K.m/W, que é um valor de referência baseado na norma IEC 60287-3-1 [14] para solos relativamente pouco úmidos. A resistividade térmica do *backfill* adotada foi de 1,0 K.m/W. Este valor é mais controlado, pois se tem conhecimento prévio do material utilizado no processo de confecção do *backfill*.

Instalações subaquáticas: neste tipo de instalação foram considerados dois trechos: (i) praia; e (ii) leito marinho. Na praia, os cabos são considerados diretamente enterrados, sem *backfill*, com temperatura ambiente de 30 °C e uma resistividade térmica de solo de 0,9 K.m/W, valor conservador dada a umidade do solo perto do mar. Uma vez que a condição nas praias, de forma geral, possui caráter mais restritivo que no leito marinho, as ampacidades das tabelas 4-4 a 4-6 são definidas a partir desse trecho.

No quadro abaixo é apresentado um resumo das condições ambientais adotadas.

Temperatura do solo [°C] - LT subterrâneas	30
Resistividade térmica do solo [K.m/W] - LT subterrâneas	1,2
Temperatura do solo [°C] - LT subaquáticas - Praias	30
Resistividade térmica do solo [K.m/W] - LT subaquáticas - Praias	0,9
Temperatura do solo [°C] - LT subaquáticas - Leito	24
Resistividade térmica do solo [K.m/W] - LT subaquáticas - Leito	1
Resistividade térmica do <i>backfill</i> [K.m/W]	1
Resistividade elétrica do solo [Ohm.m] – LT subterrâneas	1000